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Abstract
; This dissertation concerns the problem of routing wires on a single layer of an
integrated circuit or printed circuit board, starting from a sketch of the layer. A
sketch specifies the positions of layout features and the topology of the interconnect-
ing wires. Efficient algorithms are presented that (1) determine whether a sketch
is routable, and (2) produce for a routable sketch a proper routing that minimizes
both individual and total wire length. Both algorithms run in time O(A' log n) on
input of size n, and both are simple to implement. They can be adapted to a variety
of wiring models, and they subsume most of the polynomial-time algorithms in the
literature for single-layer routing and routability testing.

The algorithms are based on two theorems concerning the routings of a sketch.
One states that a sketch is routable if and only if for each cut between fixed features,
the total amount of wiring forced to cross the cut is no greater than the length of
the cut. The second theorem states that every routable sketch has a routing that
simultaneously minimizes the length of every wire, and it characterizes the wires in
this routing. To formalize and prove these theorems, a rich mathematical theory
of single-layer wire routing is developed. Its central tool, which is new to the wire-
routing literature, is the lifting of wires and cuts to a simply connected topological
covering space of the routing region. / . ..

As another application of this theoryi, the thesis presents a general algorithm for
one-dimensional layout compaction. Given a routable sketch, it finds a proper sketch
of minimal width obtainable by displacing the features horizontally and moving the
wires, always maintaining routability. Thus it automatically inserts into wires all
jog points that help in compressing the layout. In the worst case the compaction
algorithm uses time 0(n4) and space 0(n 3 ) on input of size n. The technique on
which the algorithm is founded is nearly independent of the wiring model, and it

applies to many-layer as well as single-layer compaction problems.

Key words: channel routing, compaction, computational geometry, constraint, solv-
ing, covering space, homotopy, global routing, graph algorithms, jog insertion, river
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Preface

This dissertation is the product of a four-year study on the general problem of
wire routing under separation and homotopy constraints. Originally intended as
a master's thesis, the project quickly grew out of control when repeated attempts
to solve the fundamental problems ended in failure. The driving force behind the
growth was a desire for mathematical rigor. I devised the central algorithm of
this thesis, the sketch routing algorithm, and was convinced of its correctness, long
before finding any technical justification for it. All attempted correctness proofs
using elementary tools broke down, and the breakdowns could be traced to a single
source: a lack of technical tools for dealing with the concept of homotopy at the
heart of the routing problem. Since homotopy is a topological notion, I turned to
algebraic topology, and thus was born the theory that accounts for the bulk of this
thesis.

Though my approach to single-layer wire routing has been lengthier and more
involved than one might like, I expect it to support further fruitful work on wire
routing. both practical and theoretical. This research has had two goals: to establish
certain theorems and algorithms concerning wire routing and compaction, and to
blaze a trail through the vast terrain between homotopy theory and circuit design.
The tension between these aims accounts for the technical depth of this study. To
read it carefully is likely to be a laborious task; yet I hope scholars of algorithms
will find it rewarding. Being a worked-out example of wire routing in two specific
models. this dissertation may serve as a source of ideas and a prototype for studies
of other models of wiring. Subsequent treatments should be simpler, or at least
easier, with the steps and missteps of this thesis as a guide. And as a first cut at
a theory of single-layer routing, it demonstrates the power of bringing topological
concepts to bear on routing problems.

4

Organization and prerequisites

Because this thesis addresses topics that run from topology through algorithms
and circuit design. I have tried to make it accessible to specialists and students in
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Preface

several areas. The danger, of course, is that I might make it accessible to nobody. To
guard against that possibility, I have separated the algorithms from the underlying
mathematics, and confined the advanced topology to a pair of chapters, namely
Chapters 2 and 3. The glossary includes definitions of mathematical terms that
may be unfamiliar, and I have provided a table of notations on pages 10-12.

Those who are primarily interested in wire routing and compaction should read
Chapter 1, which shows how to solve routability and routing problems, and Chap-
ter 9, which presents and justifies a compaction procedure. Chapter 10 discusses
refinements and extensions of these algorithms. When describing algorithms, I as-
sume some knowledge of the techniques of computational geometry and algorithmic
graph theory.

Those who are interested in the application of topology to routing problems
should read the remaining chapters, beginning with the definitions in Chapter 2.
The core of this dissertation is the development of a theory of single-layer wire
routing in Chapters 3 through 7. Chapter 8 uses this theory to derive results about
the sketch model. Most of these chapters require familiarity with point-set topology;
a knowledge of elementary homotopy theory is also helpful. For those with no prior
exposure to algebraic topology, I have provided a short introduction to homotopy
theory in Chapter 2.
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Introduction

Single-Layer Wire Routing

A problem that frequently arises in the design of computer components is that of
routing wires through some interconnection medium. Most wire-routing problems
are computationally hard: determining whether an instance of a routing problem
is even solvable is usually NP-complete. In this thesis I show that if the wires are
restricted to a single planar layer, and if rough routings of the wires with respect
to the routing obstacles are given, then the wires can be routed efficiently and
optimally. 'Efficiently' means that the routing algorithm runs in polynomial time,
and 'optimally' means that it simultaneously minimizes the length of every wire. To
say it another way: Given the topology of a circuit layer, one can quickly produce a
legal and nonwasteful geometry for that layer, or determine that no legal geometry
is compatible with the given topology. Figure 1 illustrates this kind of routing
problem.

(a) (b)... w .... .. ....

Figure 1. An instance of a one-layer routing problem. The wires (grey paths)
in the layout of panel (a) are rough routings. They are to be deformed into
nonintersecting paths in the grid (dotted lines) shown in part (b), with their

@, endpoints kept fixed and without moving them onto or across any features (dark
points and lines). Panel (b) shows a solution with minimum wire length.

The fundamental fact about single-layer wire routing, which I prove, is that local
routability conditions are necessary and sufficient for global routability. Consider

- 13-



Single-Layer Wire Routing Introduction

the layout in Figure 2. The wires cannot be routed: the topology forces too many
wires to pass between the obstacles A and B. In other words, the channel between
A and B has greater congestion than capacity. The routability of layouts like those
in Figures 1 and 2 is completely determined by the congestions and capacities of
channels. This result leads to efficient algorithms for testing routability, and also
to novel algorithms for layout compaction. I present these algorithms here.

. i.......... ...... Figure 2. An unroutable instance. This
..... ..... .. .. ... layout cannot be routed in the given topol-

B .ogy because the channel between obstacles
S. . A and B is overfull. More precisely, the cut

(striped segment) has space for only three
... : crossings by wires, and all four crossings of

A ... . this cut are necessary, despite the fact that
. ..i. only three distinct wires cross it.

What makes single-layer routing difficult and interesting is the possibility that
different parts of the same wire may interact. As Figure 2 shows, a wire can pass
through a channel more than once, and the different parts of the wire in that channel
are constrained differently. Thus a wire behaves in some ways like several wires and
in some ways like a single wire. To confront this issue I bring in ideas from homotopy
theory and show how to analyze single-layer wiring by lifting wires and cuts from
the routing region to its simply connected covering space. The covering space lets us
formalize and work with the notions of the amount of wiring "forced" to pass across
a cut, the regions that are "forbidden" to a wire, and the "necessary" crossings of
a cut by wires, all of which play major roles in one-layer routing problems.

A. Background

This section puts my routing problem-which will be defined formally in Sec-
tion 1A-into the context of other wire-routing problems, and it explains how that
problem grew out of earlier work. It shows how single-layer routing with rough

routings given generalizes the "river routing" problems previously studied, and how
further generalizations lead to NP-complete problems. Considerations like these
provide the theoretical impetus for my work. The following section offers an outline
of the thesis itself and an introduction to its main ideas.

- 14-
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Part A Background

Types of wire-routing problems

Wire-routing problems abound, but they share some common characteristics.
The wires, when routed, must connect certain points called terminals in a specified
pattern, and they must satisfy some geometric constraints such as having a certain
minimum thickness and separation from one another. Additional constraints may
be imposed on the wires, e.g., that they be composed of rectilinear segments. The
space in which wires are to be placed is called the routing region. In almost all

practical problems, the routing region consists of one or more planes, or layers, with
wires being allowed to pass between layers only at certain points.

The character of a wire-routing problem depends largely upon the topology of
the routing region. Multilayer routing problems are usually NP-complete [51], even
when the routing region has a simple shape. For this reason, much of the theoretical
work on multilayer wire routing has concentrated on approximation algorithms [1,
4, 451. These algorithms do not attempt to route within a fixed region, but instead
they produce wirings that approach optimality in terms of the routing space or the
number of layers they use. Single-layer routing problems are also NP-complete in the
general case [20, 44]. Several restricted single-layer routing problems are known to
be efficiently solvable, however, including those in which the routing region is simply
connected [8, 22, 41, 49, 52] or annular [2] and the terminals lie on its boundary.
One can also efficiently route edge-disjoint paths through a planar graph, provided
that the terminals lie on a single face of the graph [3, 17, 32, 42]. Such routings
are said to be in "knock-knee" mode. One can then convert the edge-disjoint paths
into multilayer routings [5, 42].

The tractable routing problems are of three kinds. In a pure routing prob-
lem, the routing region and the terminals are fixed; the algorithm must determine
whether the wires can be routed, and if so, find feasible realizations (or detailed
routings) for them. In most single-layer -outing problems, one can also minimize
the length of every wire, which is desirable from a practical standpoint. Sometimes
one asks only whether the wires can be routed at all; then one is concerned with a
routability problem. The NP-completeness results mentioned above apply to rout-
ability problems. In a placement problem, one thinks of the terminals as being
attached to modules which can move. As modules move, the shape of the routing
region may change. The issue is to find placements for the modules and feasible
realizations for the wires so as to minimize some geometric quantity like the area of
the routing region.

Wiring models

When studying algorithms for wire-routing problems, one must work at a more
abstract level than that of physical devices. One needs a mathematical wiring model

- 15 -



Single-Layer Wire Routing Introduction

for the wires and the rules they must obey. For example, wires are usually repre-
sented as paths without thickness, but the minimum spacing between the (abstract)
wires is increased to allow for the thickness of the actual (physical) wires. If one
works with wires of differing thicknesses or materials, then the minimum separation
between two wires will depend on which wires they are.

The wiring model most popular among theorists is what I call the grid-based
model. It achieves simplicity and convenience without hiding any of the essential
difficulties of placement and routing. In this model the routing region is overlaid
with a rectilinear grid, and wires are required to be disjoint paths within the grid.
The spacing between the gridlines corresponds to the minimum separation between
wires. Other common models dispense with the grid and allow wires to contain
diagonal segments or even circular arcs. Some models also permit different wires to
have different separation requirements. My routing problems provide these options,
but the examples in this Introduction stick to the grid model.

River routing

A single-layer routing problem that is well understood is the one-layer river
routing problem [8] as refined by Leiserson and Pinter [22]. I state it for the grid-
based wiring model, although other wiring models may be substituted [48]. The
routing region is a rectangular channel, and the problem is to connect terminals
A1 , ... , A,, on its bottom edge with corresponding terminals B 1 , ... , B,, on its
top edge. See Figure 3. Wires must be vertex-disjoint paths in the rectilinear grid
with integer gridpoints; all the terminals are assumed to have integral coordinates.
For technical convenience, the wires are allowed to run along the bottom gridline
of the channel, but not along the top. The terminals B 1, ... , B,, must be in the
same order as A1, ... , A,,, or else the wires would have to intersect, sinice the grid
is planar.

T ..
4T 

--...
I....

Figure 3. River routing. An instance of the problem of river routing in a rectan-
gular channel: connect pairs of terminals (dark points) by nonintersecting wires
in a grid (not shown). The grey lines show one feasible set of realizations for the
wires. Dotted lines enclose the routing channel. The line from p to q is a cut of
the channel; it has congestion 4 and capacity 4.
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Part A Background

When the wires can be legally routed, a simple, "greedy" algorithm suffices to

find their minimum-length feasible realizations in time proportional to the size of

the output. But to determine whether these realizations exist is even easier; one

can test routability in time proportional to n, the number of wires.

An instance of the river routing problem can be solved if and only if it satisfies

certain easily checked routability conditions. Consider a line segment, or cut, pq

that runs from the bottom edge of the channel to the top. Suppose that the termi-

nals to the left of p-q are A1 through Ai and B, through Bi. Then Ij - iI different

wires have terminals on opposite sides of p"q, and hence must cross p"q. I call the

quantity IJ - i I the congestion of p. On the other hand, the number of wires that

can cross pq without touching is equal to the horizontal or vertical separation be-

tween p and q, whichever is larger. I call this quantity the capacity of Pq and say

that the cut F is unsafe [6] if its congestion exceeds its capacity. If any cut in the

channel is unsafe, then there is no legal way to route all the wires. Less obvious is

the converse: if no cut in the channel is unsafe, then there is a legal way to route

all the wires. In fact, as shown in [221, the wires can be routed unless one of 2n

special cuts is unsafe. Thus to test routability, it suffices to check 2n inequalities of
the form

congestion of < capacity of p.

Because the conditions for routability are so simple, one can efficiently solve
various placement problems associated with river routing. For example, one can
determine how close together the two rows of terminals may be placed while per-

mitting the wires to be routed [8]. If the top row of terminals is free to move relative

to the bottom row, then one can find the offset between the two rows that allows

the minimum separation between them [34]. Finally, suppose that the terminals on
each side of the channel are partitioned into contiguous modules, as in Figure 3, and
that each module is free to move horizontally. Then one can position the modules
and route the wires so as to minimize the width of the channel [22].

Rough routings

The tractable single-layer routing problems share the property that rough rout-
ings of the wires can be determined in advance. To have a rough routing p of

a wire w means that every feasible realization of w can be continuously deformed
into p within the routing region. In mathematical language, every realization of w is

*O path-homotopic to p. When the routing region is simply connected, any two paths
between the terminals of w are path-homotopic, and hence any such path serves as a

rough routing for w. When the routing region is ring-shaped, rough routings cannot
be chosen arbitrarily, but only a few sets of rough routings need consideration. A

routing algorithm can simply try each set, and in fact the algorithm of [2] does just

-17 -
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Single-Layer Wire Routing Introduction

that. In contrast, when the routing region has an arbitrary number of holes, as
effectively happens in the NP-complete single-layer routing problems, the number
of sets of rough routings that need consideration seems to be exponential.

One is naturally led to consider single-layer routing situations in which rough
routings of wires are given. Pinter [41] proposed such a problem, called DRH
("Detailed Routing given a Homotopy"),* which involved routing wires in a finite
rectilinear grid. An instance of DRH comprises (1) rectangular modules within a
bounding box, (2) terminals on the modules' boundaries, and (3) nonintersecting
rough routings that connect pairs of terminals. DRH is a routability problem:
it asks whether the given rough routings can be continuously deformed, with their
endpoints fixed and without touching any other modules, so that the resulting wires
are disjoint paths in the grid.

(i) 1 (ii)

Figure 4. The problem called DRH. Part (i) shows an instance of Pinter's prob-
lem DRH. Solid rectangles are modules, dark points are terminals, and grey curves
are rough routings. This instance is routable, because the wires can be realized as
shown in (ii). (The grid is not shown.) The dotted line in (i) is a cut. Although
the rough routings cross it four times, two of those crossings are not necessary, as
they can be removed by deforming the rough routing p. Hence the congestion of
the cut is 2.

Like the river routing problem, DRH can be analyzed in terms of the congestions
and capacities of cuts. One defines a cut to be a line segment whose endpoints lie
on modules and whose interior falls in the routing region. The capacity of a cut is
the number of wires that can cross the cut without touching; it depends only on
the number of gridlines the cut crosses. The congestion of a cut is. in essence, the
number of times that wires are forced to cross the cut; it depends upon the topology

* By 'homotopy' he meant a set of rough routings, one for each wire to be routed.

Technically, the term 'homotopy' refers to a continuous deformation of topological maps.

-18-
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Part A Background

of the rough routings. As before, we say that a cut is unsafe if its congestion exceeds
its capacity. Cole and Siegel [61 showed that an instance of DRH is unroutable if
and only if it has an unsafe cut.

The characterization of routability has many applications. It was used in [6] to
develop a fast algorithm for solving DRH, given a nethod of computing congestions
of cuts. Leiserson and I presented such a method in a subsequent paper [21], thus
showing that DRH is solvable in polynomial time. We also set forth routability
conditions for a problem very similar to DRH and used them to construct a sim-
plified routability testing algorithm. As in the case of river routing, the routability
conditions can be used to solve placement problems as well [29].

Role of this thesis

The fact that DRH is tractable suggests that single-layer routing problems may
also be efficiently solvable when rough routings are specified. In fact, Leiserson and
I proposed a polynomial-time algorithm for such a problem in our paper [21]. Prov-
ing the correctness of our algorithm, however, turned out to be much more difficult
than we expected. The problem was fundamental: we had almost no technical tools
for working with wires in multiply connected regions. The results in [6] concerning
DRH worked only for the grid-based wiring model, and even so, their mathemati-
cal foundations were unclear. The additional complexity that arises in continuous
wiring models is considerable, as one can see by comparing the papers [52] and [22].
All told, the problem of converting rough routings to detailed routings was poorly
understood.

In this dissertation I remedy that situation and show how single-layer routing
problems can be efficiently solved. My main technical contribution is a mathe-
matically rigorous theory of single-layer wiring. It gives necessary and sufficient
routability conditions for DRH-like problems, and it applies to a variety of common
wiring models, gridless models included. In addition, it characterizes the minimum-
length feasible realizations of wires, thus shedding light on routing problems as
well as routability problems. This theory allows me to justify and generalize the

routability testing and routing algorithms given in my earlier paper [21].
The theory of single-layer wire routing has applications to placement problems

as well. One placement problem of great practical importance is layout compaction
with automatic jog insertion. This problem generalizes the problem of placing
modules for river routing in a channel [22], and it can be solved similarly by means
of routability conditions. In my master's thesis [29] I presented a polynomial-time
algorithm for this problem, but it was restricted to the grid-based wiring model.
Using the new theory of single-layer wiring, I extend this algorithm to many other
wiring models.
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Figure 6. Rigid and flexible compon'ents. Here is a more abstract representation
of the lower layer of the circuit in Figure 5. It distinguishes between rigid devices
"dark grey) and flexible wires (light grey).

layer routing and placement problems that have previously been proven tractable.
On the other hand, natural variations on these problems that are less restrictive
are also NP-complete [41, 48], and hence are unlikely to have polynomial-time al-
gorithms.

Wires as flexible objects

One motivation for the sketch problems stems from the design of integrated
circuits (ICs) and printed circuit boards (PCBs). Figure 5 depicts part of the layout
for an integrated circuit: each grey tone corresponds to one layer of the chip. This
layout contains no explicit information about the functions performed by different
regions on a layer. The designer, on the other hand, considers some areas to be wires
and other areas to be device components, as shown in Figure 6. He or she is often
willing to let wires change in shape and length, but wants to control the shapes of

-21 -
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active devices and the widths of wires, as these parameters have the greatest effect
on the performance of the circuit. This observation suggests that a design system
for integrated circuits should distinguish between wires and other components, and
should treat wires as flexible connections of fixed width. A sketch is an abstraction
of an integrated circuit layer that allows wires to be treated this way.

The type of system I envision would free the designer from concern with the
geometry of wires. The designer would provide the system with rough routings
for wires, and the system would either route them to, form a legal layout, or else
show the designer why no routing was possible. When the designer wished to move
some of the circuit devices, the system would automatically bend wires and move
other components as necessary to keep the layout legal. The problems of sketch
routability, routing, and compaction embody the main computational tasks that
such a system should be able to execute.*

Nature of this research

Despite its practical roots, this dissertation is in essence a theoretical study. I
have not implemented any of my algorithms, nor are the sketch problems them-
selves designed to model the complex rules that IC designs must obey. Instead,
the thesis is primarily concerned with the mathematical foundations of single-layer
wire routing. My approach allows me, in the analysis of sketch problems, to trade
complexity in the algorithms for complexity in their proofs of correctness. Thus the
algorithms I present are relatively simple, but thc ir justification occupies the bulk
of this document.

Central to both the algorithms and the theory is the concept of a cut: a path
in the routing region that spans two obstacles. As with other single-layer wire-
routing problems, the congestions and capacities of the cuts in a sketch determine
its routability. This theorem informs the algorithms for the sketch routability and
compaction problems; its application to routability testing is evident. Taking the
idea farther, I show that a sketch can be compacted by transforming the rout-
ability conditions given by cuts into constraints-simple linear inequalities-on the
positions of obstacles. Solving the resulting constraint system reveals the optimal
locations for the obstacles, including the terminals of wires. The compacted sketch
can then be routed to restore the wires.

The sketch routing algorithm requires a deeper result, and a new concept: that

* Such a system has recently been implemented [36, 37]. Called 'Bubbleman', it

employs similar ideas to those presented here, but its algorithms are quite different. Rather
than solving global routing and routability problems, it incrementally builds a layout with
minimal wire lengths as one inputs the components. It also performs two-dimensional
compaction with automatic jog insertion via simulated annealing [19].
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Part B Thesis Overview

of a half-cut. Whereas a cut measures the congestion between two obstacles, a half-

cut measures the congestion between an obstacle and a wire. Each half-cut for a

wire constrains the routing of that wire: if the half-cut becomes too short, the other

wires will be unable to fit across it. Certain of these constraints suffice to establish

the optimal detailed routing of a sketch-the feasible realization whose wires have

minimum length.
To a large degree, then, the study of single-layer wire routing is the study of

cuts and half-cuts, and their interactions with wires. The subject has two parts:

a mathematical part, which establishes the theorems concerning routability and

minimum-length feasible realizations; and an algorithmic part, which concerns the

computation of congestion for cuts and half-cuts, and the integration of this infor-

mation over an entire sketch. Besides the division between algorithms and mathe-

matics, there is another. The sketch compaction problem demands rather different

techniques from the sketch routing and routability problems, and so I treat it sep-
arately.

Algorithmic ideas

Chapter 1 defines the sketch model and presents efficient algorithms for the
sketch routability and routing problems. The idea behind these algorithms is the
conversion of topological conditions to geometric conditions. My theory of single-

layer wiring reduces the sketch routing and routability problems to two simpler

problems:

(1) computing the congestion of a cut or half-cut, and

(2) finding the shortest routing of a wire that passes through certain line seg-
ments in a certain order.

Problem (2) happens to be equivalent to the task of finding the shortest path that

passes in order through a sequence of triangles, each one sharing an edge with the

preceding one. In this form the problem is evidently geometrical, and can be solved
in linear time by a short algorithm. Problem (1) is harder.

To compute the congestion of a cut in a sketch, I use a data structure called the
rubber-band equivalent of the sketch. This structure is built by shrinking every wire
in the sketch to its minimum length. The shrunken wires, or rubber bands, make no

more crossings with cuts than their topology dictates. Leaving aside some technical

difficulties, the congestion of a cut is derivable from crossings it makes with rubber
bands. The same goes for half-cuts. Thus the rubber-band equivalent expresses

a topological quantity, congestion, in terms of a geometr;- quantit , a crossing

number. Computational geometry provides the means to accelerate the computation
of these crossing numbers. The construction of the rubber-b? -"ivaient, too, is

an essentially geometric process, and fairly efficient. In sum, ornetr: ni, )ds
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provide a conceptuall3 niform approach to sketch routing and routability testing,
,. and lead to efficient algorithms for both problems.

Mathematical ideas

Chapter 2 begins a long technical development that culminates in correctness
proofs for my sketch routing and routability testing algorithms. (Actually, some of
the final steps are unfinished.) The theory revolves around a single concept: that of
a simply connected covering space for the routing region. The covering space is a
surface with infinitely many layers, each built from pieces of the routing region. The
pieces are sewn together in such a way that every loop in the surface can be shrunk
to a point. Paths in the covering space can be projected down to the routing region,
and paths in the routing region can be lifted up into the covering space. Nearly
every aspect of the theory exploits the special relationship between the multiply
connected routing region and its simply connected covering space.

The covering space serves two primary functions. First, it provides a good
definition of a necessary crossing between a cut and a wire. Informally, a necessary
crossing is one that cannot be removed by rerouting the wire. The formal definition
helps me to analyze the congestion of cuts, and to rigorously derive inequalities
among the congestions of different cuts. Second, the covering space sorts out the
interactions of different parts of the same wire. When a wire is lifted to the covering
space, homotopically distinct parts of the wire fall on different layers. Thus the
covering space transforms a problem witl, i )motopy constraints (the rough routings)
into a purely spatial problem. To show LLiat a wire can be routed, I first find an
appropriate routing within the covering spaie, and then project it to the routing
region.

A second model

Unfortunately, the sketch model lends itself poorly to topological analysis: the
covering space of the routing region does not permit lifting of wires and cuts. So
my mathematical development employs a more elegant, but less practical, model,
in which the analogue of a sketch is called a design. The design model supportsIa rich theory of routing that relates properties of cuts to the existence of various
types of routings. It also identifies and characterizes the optimal, or ideal, routings
of a routable design, and provides methods for computing the congestions of cuts
and half-cuts. The design model differs sufficiently from the sketch model, however,
that results in one cannot be applied directly to the other. Instead one must derive
results concerning sketches by approximating the sketch with designs that, in some
sense, converge to it.

24-
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I spend Chapters 4 through 7 exploring designs, Chapters 2 and 3 preparing
for this exploration, and Chapter 8 applying the results to the sketch model. The
chapter-by-chapter breakdown is as follows.

* Chapter 2 begins by stating many of the mathematical definitions and no-
tations that will be used throughout the technical parts of the thesis. It
also supplies a short introduction to homotopy theory and covering spaces,
enough to appreciate the elementary ways in which I employ them. The rest
of Chapter 2 claims, mostly without proof, theorems from topology that will
be used sporadically in the following chapters.

9 Chapter 3 defines the class of spaces, called sheets, that serve as the routing
regions for designs. It then studies the topology of their simply connected
covering spaces, which I call blankets, and of various sorts of paths in sheets
and blankets. The central result is that when a link (e.g., a cut or wire) is

* lifted to a blanket, it separates the blanket into two pieces, a left side and a
right side. This result allows us to recapture some of the simplicity of river
routing in channels, where every cut and wire divides the channel. Thus

A, Chapter 3 lays the real foundation for what is to come.
2 * Chapter 4 defines the design model and begins to develop the theory of

*cuts, half-cuts, and wires. It relates the congestion of a cut to the necessary
crossings of the cut by wires, and it identifies congestion with a quantity
called flow defined in terms of liftings to a blanket. Flow is a much more
convenient and powerful concept than congestion, and much of Chapter 4 is
concerned with relating the flows across different cuts. Not all the cuts we
consider are straight; some even have self-intersections.

e Chapter 5 defines the ideal routings of the wires in a safe design, and proves
that they form a valid routing of the design. The safety of a design is a
function of its straight cuts, and primarily of the flows and capacities of those
cuts. The result of the construction is that every safe design is routable. In
more abstract terms, local routability implies global routability.

* Chapter 6 completes the proofs of the major theorems concerning designs.
First it shows that unsafe designs are unroutable, providing a converse to
the result of Chapter 5. It also shows that the arc length of ideal routings
cannot be improved upon. Finally, it proves that the routability of a design
depends only on the properties of a few straight cuts, not all of them. This

*• observation makes it effective to test routability by testing safety.

* Chapter 7 goes on to consider techniques for routing and testing the rout-
ability of designs. The design model is ill-suited for the developement of
routing algorithms, but the techniques developed with reference to designs
can later be applied to sketches. Much of Chapter 7 revolves around the
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Single-Layer Wire Routing Introduction

use of rubber bands in routing and testing routability. It explains how to
construct them, why they can be used to compute flow, and how they give
rise to the structures (called corridors or tunnels) that we using in routing
wires.

Chapter 8 develops a careful correspondence between sketches and designs.
It then shows how to use results in the design model designs to obtain results
in the sketch model. Due to lack of time and space, some proofs are omitted.
The outcome includes two major theorems concerning sketches, and also
justifies my main algorithms for routing testing the routability of sketches.

I make no claims about the simplicity, shortness, or elegance of my proof tech-
niques. Indeed, they could surely be improved, particularly if more advanced results
in algebraic topology were assumed. They testify nonetheless that the tool of lifting
to a simply connected covering space is apposite to wire routing with homotopy
constraints. As long as my current proofs are, they might be even longer in another
approach. For any approach must ultimately be based on a solid understanding of
the role of homotopy in the wiring problem, such as I have tried to give in Chapters 3
and 4.

Compaction with flexible wires

Chapter 9 presents and proves correct a polynomial-time algorithm for sketch
% compaction. The algorithm requires a new approach to the manipulation of cuts

because the geometry of a sketch can change radically during compaction. The
topology of the sketch, on the other hand, is invariant. For this reason I introduce a
second technique for computing congestions: a graph-theoretic method that works
directly from the topology of the sketch. It includes an interesting preprocessing
phase that speeds up searches through the graph that represents the sketch.

The chief difficulty in sketch compaction, however, is not in computing the con-
gestions of cuts, but in deciding which cuts require consideration. As the obstacles
in a sketch move, the relevant cuts change, as do their congestions. What the com-

0 paction algorithm actually examines is a set of potential cuts-cuts whose positions
are functions of the configuration of the obstacles-that give rise to routability con-
ditions. It turns out that by considering the potential cuts in a certain order, one
can find for each potential cut the configurations in which it constrains the lay-
out; the potential cut has the same congestion in all such configurations. So the
compaction algorithm builds its constraint system iteratively, at each step consid-
ering the effects of adding a single potential cut. The algorithm itself is far from
transparent; only in the analysis does its rationale become clear.

The analysis of the compaction algorithm leans heavily on the notion of a con-
figuration space. In sketch compaction the configuration space is the vector space of

1 - 26-
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possible displacements of the obstacles.* I relate the compaction algorithm to an ab-
stract algorithm that manipulates sub.ets of the configuration space. (The actual,
or concrete, algorithm represents these subsets by systems of linear inequalities.) I
deduce the correctness of the abstract algorithm from four postulates concerning
the sequence of potential cuts it evaluates. These postulates indeed hold for the
potential cuts used by the compaction algorithm, and hence the correctness of that
algorithm quickly follows. The advantage of this proof strategy is that changes
in the model need not entail major changes in the proof; rather, it is enough to
choose a sequence of potential cuts and check that they satisfy the postulates in the
particular model one wishes to use.

Extensions and discussion

Chapter 10, the final chapter before the Conclusion, explores how far and how
easily the sketch model can be extended in various ways. Among the possibilities it
considers are these: allowing wires and obstacles to be made of different materials,
each pair of materials with its own separation requirement; forcing wires to run in
a grid; measuring the separation between wires with the euclidean metric; allowing
wires to contain circular arcs; allowing obstacles to contain circular arcs; permitting
the terminals of a wire to merge or pass through one another during compaction;
routing with extended terminals, letting the points of connection move; and includ-
ing wires with more than two terminals. In most cases the proposed changes in
the sketch algorithms are relatively minor, but to justify them may be difficult (or
even impossible, if one of my conjectures is false). The greatest problems arise in
attempting to handle extended terminals and multiterminal nets. Chapter 10 pro-
poses an alternative to the sketch model that, if it proves mathematically tractable,
could eliminate these and several other problems.

The thesis concludes with a summary of its results, a comparison with some
related work, a list of open problems, and several suggestions of directions for future
research.

* The configuration space seems to be a natural tool for understanding compaction.
It was by formulating the compaction problem in terms of configurations that I discovered
a fact that could have significant practical consequences for compaction algorithms [30].
My observation, explained in Chapter 9, implies that Dijkstra's algorithm can be used to
solve the standard one-dimensional compaction problem if the initial layout is legal.
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Chapter 1

Sketch Algorithms

This chapter states precisely the major results of this dissertation. First it defines
the sketch model and the problems of sketch routability, sketch routing, and sketch
compaction that my algorithms solve. It then considers a data structure for a sketch,
called its rubber-band equivalent, which supports computation involving the sketch
topology, and thereby speeds up the algorithms for sketch routability and sketch
routing. Next it presents algorithms for those two problems. Both algorithms have
worst-case running time O(n 2 log n) on input of size n. Then, in Sections 1E and 1F,
I show that the performance of these algorithms is limited mainly by the routability
testing procedure, and I present several methods for improving its average-case
running time. By exploiting the idea of shadowing [6] we obtain an algorithm for
sketch routability that runs in time O(n3 /2 log n) on the average. All proofs are
deferred to Chapter 8. Sections 1A through 1D represent joint work with Charles
Leiserson.

1A. The Sketch Model

We begin by defining sketches and the natural problems set in that model. This
section also states the sketch routability theorem and the sketch routing theorem
in which my algorithms are grounded.

A sketch is an abstraction of the wiring on a single layer of an integrated circuit
or printed circuit board. It represents the topology and the geometry of that layer,
but none of its electrical or functional characteristics. I have chosen the sketch
model for its simplicity, its similarity to existing theoretical models, and its ease
of implementation. Consequently, it deals only with piecewise linear objects. This
limitation is not serious, for in practice one often approximates curved structures by
polygons in order to avoid the problems of computing with irrational numbers (in
whatever representation). A more serious drawback is that sketches, as described
here, cannot satisfactorily represent wires with more than two terminals. These
issues are discussed further in Chapter 10.
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Section 1A The Sketch Model

Since a sketch must distinguish between flexible and rigid objects, it has two
types of components: traces, which represent either rough routings or detailed rout-
ings of wires, and features, which represent terminals, devices, and routing obstacles.
A feature is a point or line segment in the plane, and a trace is a piecewise linear
path with the following properties.

(1) The path has no self-intersections.

(2) The path touches no features except at its endpoints.

(3) The endpoints of the path are features-the terminals of the trace.

(4) Each terminal is a point, isolated from the other features.

A sketch is a finite set of features that intersect only at their endpoints, together
with a finite set of nonintersecting traces. The connected groups of features in a
sketch are called islands. By (3), every terminal is an island; the islands that are not
terminals are called obstacles. The routing region of a sketch is the set of points
that lie on no feature. Islands and traces are collectively called elements.

(a)(b

S3 2

31

Figure la-1. A typical sketch and the territories of its elements. Part (a) illus-
trates a simple sketch. Dark line segments are features, light paths are traces,
and the number nearest to each element indicates its width. Part (b) shows each
element's territory, which takes its width into account. The territory of a trace is
not shown where it overlaps the territories of its terminals.

The elements of a sketch actually represent the centerlines of regions in the wiring
layer. Hence we associate with each element a positive number called its width that
indicates how much space it actually requires. No trace may have greater width
than either of its terminals. The territory of an element of width d is the set of
points whose distance from that element is less than d/2.

We measure distance using a piecewise linear norm,* denoted " H, that is the
same for all elements. I call this norm the wiring norm, because different norms

* See the glossary for an explanation of wiring norms. The examples in this chapter
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give rise to different wiring models. Terms like 'distance' and 'closest'-but not 'arc
length'-refer to measurement in the wiring norm unless otherwise specified. The
distance in the wiring norm between two points p and q is 11p - qj1, and the distance
between two regions P and Q is

11P - Q11 = inf inf 11p - q1J.

Depending on the placement of its elements, a sketch may or may not represent
a valid circuit layout. If it does, the sketch is called proper. In my model a sketch
is proper if the elements that should not interact are properly separated. Two
elements are assumed to interact if and only if their territories overlap. Sometimes
this interaction is good, as when a trace connects to its terminals. Thus we consider
a sketch to be improper if it has two elements with overlapping territories, unless
those elements are a trace and one of its terminals.

There is one further constraint on proper sketches. It arises because a trace
must be separated from itself, lest it form a loop in the layout. Let us say that a
trace is self-avoiding if the set of points lying outside its territory and outside the
territories of its terminals has only one connected component that includes islands
of the sketch. In other words, the territory of a self-avoiding trace, together with
those of its terminals, does not separate any two islands from one another. All the
traces in a proper sketch must be self-avoiding. The sketch in Figure la-i fails to
be proper because the trace w is not self-avoiding.

Sketch routing problems

The single-layer routing problems I consider take a sketch as input. This sketch
is not expected to be proper. Instead, each trace in the input sketch represents a
rough routing; it defines a set of possible realizations for that trace. A realization
of a sketch is a sketch that results from routing each of its traces, that is, replacing
them by realizations. We say that a sketch is routable if it has a proper realization.
The sketch routability problem, then, is just the problem of determining whether
a sketch is routable. It turns out that whenever a sketch is routable, it has a proper
realization that simultaneously minimizes the length of every trace. The sketch
routing problem is to find this realization if it exists.

To route a trace in a sketch, one deforms the trace in a continuous fashion. The
notion of continuous deformation is made precise as follows. We define a bridge to
be a piecewise linear path in a sketch that intersects features of the sketch at its
endpoints only. Then all traces are bridges. We think of a bridge as a continuous

use the L"* norm, in which the distance between two points is the maximum of their
horizontal and vertical separation.
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function from the unit interval I = [0, 1] to the plane R2 . Two traces of the same
width, say 00 and 01, are bridge-homotopic if they are part of some family of
bridges { 0t : t E I } such that the function T: I x I -- R 2 defined by T(s, t) = Ot(s)
is continuous and piecewise linear. The function T is a homotopy or "continuous
deformation" of bridges. If 0 is a trace in a sketch S, then a route for 0 is any bridge
that is bridge-homotopic to 0 in S. A realization of 0 is a trace that is a route for
9. The realization is feasible if it is part of a proper realization of the sketch S.

(a)

Figure la-2. A proper realization of a sketch and a compacted version of it.
Part (a) is a proper realization of the sketch in Figure la-I: the territories of its
elements are disjoint, except where traces contact their terminals; and every trace
is self-avoiding. (Territories are open sets; they do not include their boundaries.)
Every trace in this realization has minimum length. Part (b) shows a compacted
version of this sketch. If. we allow the islands to move sideways independently,
then among all the proper sketches that are reachable from the configuration at
left, the sketch in (b) has minimum width.

The sketch compaction problem is a generalization of the sketch routing problem
that involves moving features as well as traces. The input to this problem is a
routable sketch with the islands grouped into modules; each module is allowed to
move horizontally as a unit. Modules may not move vertically. As modules mov,
traces must move as well in order to remain connected to their terminals. Let us
say that a sketch is reachable if it can be obtained from the input sketch by a
continuous, piecewise linear motion that maintains the routability of the sketch.
(The motion of each trace should be a piecewise linear homotopy, though not one
that necessarily fixes its endpoints.) The sketch compaction problem is to find
a proper, reachable sketch of minimum width. Solving this problem allows one
to perform one-dimensional compaction of VLSI layouts, inserting jogs into wires
automatically; a special case of tnis problem was considered in [29].
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Major results

This thesis presents polynomial-time algorithms for the sketch routability, rout-
ing, and compaction problems. Given as input a sketch of size n, the routing and
routability testing algorithms run in time 0(n 2 log n), while the sketch compaction
algorithm runs in time 0(n 4 ). All are fairly easy to implement, and are efficient
enough to be useful in practice.

The correctness of these algorithms rests on the theory of single-layer wiring.
This theory gives necessary and sufficient conditions for a sketch to be routable,
and provides methods for testing these conditions. For routable sketches, it also
characterizes the minimum-length feasible realizations of traces. The tools of the
theory are the techniques of point-set and algebraic topology; the objects it studies
are traces arid cuts.

One important result of the theory says, in essence, that a sketch is unroutable
if and only if too many traces are forced to pass through the "channel" between
some pair of islands. This statement may seem obvious, but it is far from trivial.
We formalize it using the idea of a cut. A line segment is a cut of a sketch if it

touches the features of the sketch at its endpoints only. (More properly, a cut is a
linear path, and we write the cut P as p c- q if we wish to emphasize its orientation
from p to q.) Each cut has a capacity that represents the maximum total width of
the traces that can cross it. If endpoints of the cut R lie on the islands P and Q,
then we define

capacity of p- = length of - (width of P)/2 - (width of Q)/2.

The length of pq is measured in the norm used to define territories.
Each cut also has a congestion that measures the total width of the traces forced

to pass across it. To define it, we first define the entanglement of a trace with a

cut q to be the minimum number of crossings of Y by any route for the trace.
Crossings that occur at p or q do not count. The entanglement of a trace with a cut
represents, in iome sense, the number of necessary crossings of the cut by the trace.

0Intuitively. a necessary crossing is one that cannot be removed by applying a bridge
homotop to the trace. This intuitive notion is not easy to formalize, however, so we
leave it informal until Section 4B. Congestion is defined in terms of entanglement.

If E denotes the set of traces in the sketch, then we define

congestion of p-q = >j (width of 0) • (entanglement of 0 with Pq).
OGE9

If the congestion of a cut exceeds its capacity, then the traces will not be able
to fit across the cut. We say a cut is unsafe if its congestion exceeds its capacity.
This does not always mean the sketch is unroutable, however, because there may
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Section 1B The Rubber-Band Equivalent of a Sketch

Figure la-3. The attributes of cuts. In the
sketch depicted here, the dashed line p4 is a
nonempty cut. Three traces intersect this
cut. The trace a has width 1 but entangle-
ment 0 with pq, as the crossings it makes

M with p4 are unnecessary. The trace 4 has
width 2 and entanglement 2, and the trace

P 7 has width 3 and entanglement 1. Hence
0 .the congestion of the cut p4 is 7. If its ca-

pacity is 7 or greater, this cut is safe.

not be any traces crossing that cut. A cut is empty if it has zero congestion and
its endpoints lie on the same island. Empty cuts have no bearing on routability.
A nonempty, unsafe cut, on the other hand, means that the channel it spans is
congested. A sketch is safe if and only if all its nonempty cuts are safe.

Now the theorem concerning routability can be stated more precisely. If a sketch
is safe, then it is routable. Conversely, every routable sketch is safe. I call this result
the sketch routability theorem. It suggests that the routability of a sketch may be
checked by testing whether certain cuts of the sketch are safe. One can easily find a
small set of critical cuts with the property that if any nonempty cut is unsafe, some
nonempty critical cut is unsafe. My algorithm for the sketch routability problem
works by testing the safety and emptiness of these critical cuts.

More significant than the sketch routability theorem, however, is the sketch
routing theorem, which yields minimum-length feasible realizations for the traces
in a routable sketch. This theorem cannot be fully stated here, because it depends
upon a complicated construction of traces called ideal realizations. Intuitively, an
ideal realization of a trace in a routable sketch is a minimum-length route for that
trace that stays far enough away from the islands to permit the other traces to be
routed. Every trace in a routable sketch has a unique ideal realization. The sketch
routability theorem states two things. First, if every trace in a routable sketch
is replaced by its ideal realization, then the resulting sketch is proper. Second,
no shorter feasible realizations exist for those traces. To solve the sketch routing
problem, therefore, one need only be able to compute the ideal realization of each
trace in a routable sketch. My routing algorithm does just this.

1B. The Rubber-Band Equivalent of a Sketch

My algorithms for sketch routability and routing both rely on a data structure
called the rubber-band equivalent (RBE) of the sketch. This structure solves the
central difficulty associated with the processing of sketches, namely the integration

- 33 -

N 7, JnI N1l, 1 IN,



Sketch Algorithms Chapter 1

of geometric and topological information. Methods from computational geometry
can be applied to the RBE to compute the congestions of cuts and to find constraints
on the positioning of traces. In this section I define the RBE, show how to construct
it, and explain the operations that it supports.

I assume the input sketch is represented as a pair of data structures: a set F
of features, and a set T of traces. Let us denote the size of a data structure D
by the symbol IDI. Each feature is a point or line segment, and hence requires
constant space to represent. Each trace, being piecewise linear, is represented as a
sequence of line segments. Thus IF is proportional to the number of features in
F, and ITI is proportional to the number of line segments that compose the traces
in T. If S is the sketch (F, T), then we have ISI = JFJ + ITI. The algorithm given
in this section computes the rubber-band equivalent of a sketch S = (F, T) in time
O(IFI ITI log ISI).

Motivation

Intuition suggests that if a trace crosses a cut more times than necessary, then
it contains an unnecessary detour. If we could make each trace as short as possible,
then the number of crossings between a cut and a trace would equal their entan-
glement. Unfortunately, most traces have no minimum-length routes, for a t-ce is
not permitted to contact any features but its terminals. So we construct instead
the rubber band of each trace: the shortest path, in euclidean arc length, that is
the limit of a sequence of routes for that trace. Intuitively, we shrink the trace to
its minimum length, allowing it to touch features but not to cross over them. The
resulting path is a sequence of line segments whose endpoints are feature endpoints.

If we replace every trace in a sketch by its rubber band, the result is not, in
general, a sketch. It nevertheless can be treated as a sketch in which features and
traces have infinitesimal separation. Wherever a rubber band touches a feature,
we consider it to leave the feature to its left, leave the feature to its right, or else
connect to the feature (if the feature is one of its terminals). Similarly, wherever
one rubber band touches another, the second rubber band falls either left or right of
the first. No rubber band ever crosses over another one, and hence this adjacency
information can be assigned in a consistent manner to all the features and rubber
bands. The RBE of the sketch stores this information in a concise form.

The RBE helps one to compute, for any desired straight cut, the sequence of
hIp traces that necessarily cross it, in order along the cut. This sequence is called

the content of the cut. (It may contain the same trace more than once.) The
content of a cut nearly equals the sequence of rubber bands that cross the cut,
the difference being that one sequence consists of traces while in the other one
consists of the corresponding rubber bands. The tricky part, of course, is defining
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Section 1B The Rubber-Band Equivalent of a Sketch

•r F

Figure lb-1. The rubber-band equivalent of a sketch. The sketch is on the left,
its RBE on the right. In the RBE, features and rubber bands that are shown here
as adjacent segments actually overlap. The strands have been artificially displaced
to show the adjacency relations among the features and rubber bands.

4 which rubber bands cross a cut and in what order they do so. Here the adjacency
information comes in. Some places where the cut intersects a rubber band should
not be considered crossings. For example, if the cut intersects a feature from the
top, and the rubber band runs along the bottom of the feature, one should think
of them as being separated by an infinitesimal distance. If one filters out such
intersections, the remaining ones correspond exactly with the traces in the cut's
content. Moreover, the cut can be considered to cross the rubber bands in a certain
order, because even where the rubber bands overlap, their adjacency relation orders
them totally. This ordering is irrelevant for computing flow but highly significant
for wire routing, as explained in Section 1D.

Definition and use of the RBE

The RBE of a sketch is essentially a planar multigraph with some extra struc-
ture. Its nodes are feature endpoints; its arcs are features and cables, which are
groups of rubber band segments. For each pair {p,q} of feature endpoints there
can be up to three cables from p to q: one on each side of the cut or feature P-,
and one that crosses over the cut P '. The rubber band segments within each cable
are called its strands, and are totally ordered. We represent the ordering by means
of a height-balanced tree. In addition, the features and cables radiating from each
feature endpoint are circularly ordered as shown in Figures lb-2 and lb-3. We store
this ordering in a pair of height-balanced trees by breaking it into total orderings as
explained later. In effect, these orderings specify which features and strands would
be adjacent if the rubber bands had infinitesimal thickness. The total orderings
within cables, combined with the circular ordering on the cables that touch a fea-
ture endpoint, give rise to a circular ordering on the strands that touch a feature
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Figure lb-2. The circular ordering of ca-
bles at a feature endpoint. The arrows de-
pict the circular ordering of cables at feature

' 3 cables endpoints p and q. There can be up to three
* cables having p and q as endpoints.

2 cable~s

2 cables. 1 feature

/ q Figure lb-3. A crossing sequence. The
crossing sequence of the ray p emanating

from p consists of the rubber bands in ca-
able a followed by the rubber bands in ca-

ble /.

endpoint.
The RBE supports the following operation: given a ray emanating from the

feature point p, report its crossing sequence at p: the sequence of rubber bands
that cross over that ray at p. Rubber bands that end at p are not part of the crossing
sequence, nor are rubber bands that are parallel to the ray at p. The content of a
cut p c, q, converted into a sequence of rubber bands, is then the concatenation of
three lists.

(1) First is the crossing sequence of the ray p at p.

(2) Next come the rubber bands whose strands cross of the middle of p c q. The
strands are sorted by distance from p, and ordered within each cable as well.

(3) Last is the reverse of the crossing sequence of rp at q.

If p is a point on a feature but not a feature endpoint, then the crossing sequence
of a ray at p can be computed without new data structures. Let 4T be the feature
containing p. The crossing sequence of a ray p- is just the sequence of strands in
the cable (if any) lying along 47 on the same side as s. This cable can be found by
examining the circular order at q or r, because if it exists, it must be adjacent to

, , ,the feature 4-.

To compute crossing sequences at a feature endpoint p we use one of two different
data structures. If all the cables touching p fall on a line 1, as shown in Figure lb-2,
then it suffices to store four different crossing lists: two for the rays lying in t, and
two for rays pointing into the half-planes of t. In this case, at most six arcs (features
and cables) connect to the node p, so their circular ordering can be represented by
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a constant-size data structure. If the cables touching p are not all parallel, on the
other hand, then we have the situation of Figure lb-3. There is a ray pr whose
crossing sequence at p is longest, and a ray p whose crossing sequence at p is
empty. Moreover, the crossing sequence at p of an intermediate ray p-q is obtained
by enumerating the strands in the cables interior the angle Lspq, where the interior
of this angle is chosen not to include the ray pr. To enumerate these cables quickly,
we break the circular ordering of the arcs incident on p into two total orderings.
The arcs between pr and rs clockwise are stored in one height-balanced tree, and
the arcs between r- and p-s counterclockwise are stored in another height-balanced
tree.

Constructing the RBE

The rubber-band equivalent of a sketch can be computed fairly efficiently. First
one triangulates the routing region with cuts, which I call doorways or simply doors.
This operation is efficient-it requires only O(IF log IFI) time-and fairly standard
in computational geometry [43], so I shall not dwell on it. Next one constructs
the planar graph whose nodes are feature endpoints and whose arcs are feature
segments. Nodes can be represented initially without using height-balanced trees,
but when cables are added to the graph, some nodes will have to be converted to
the more general data structure. Then comes the interesting part: for each trace in

4 the sketch one computes its rubber band and inserts it into the data structure. I
describe the insertion operation first.

Given the rubber band of a trace, one inserts its strands in order. To insert the
strand Tr-, first determine which cable it belongs in. There can be up to three cables
from q to r: one to the left of the ray q-; one in the middle, which crosses over qr;
and one to the right of q-. If the new strand leaves q and r to different sides, it goes
in the middle cable. Otherwise if it leaves either q or r to the left or right, it goes
in the left-hand or right-hand cable, respectively. If this strand is the entire rubber
band, so that it has q and r as terminals, it goes in the left-hand cable by default.
If the appropriate cable for the strand Tr does not exist, create it and insert it into
the circular orders at q and r.

The case in which the cable exists is more difficult. If Tr is the first strand
in its rubber-band (i.e., q is its terminal), then insert it at the right-hand edge of
the left-hand cable or the left-hand edge of the right-hand cable, as appropriate.
Otherwise let p-q be the strand preceding - in its rubber band, and find which
strands are adjacent to P-q in the circular order at q, ignoring those that connect
to q as a terminal One of these is connected to a strand X that goes to r. Insert
Tr adjacent to X.
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Making rubber bands

To find the rubber band for a trace 9, we follow 9 through the triangulation, and
record the sequence of doorways that 0 passes thr ,ugh. When 0 crosses a doorway

Fq but immediately returns, the doorway Tq may be removed from the sequence,
because it represents an unnecessary detour. After eliminating such unnecessary
doorways, which one can do in linear time, one is left with the sequence of doorways
that the rubber band for 9 passes through. Let us call this sequence of doorways a
corridor. The shortest path through this corridor that connects the terminals of 9
is the rubber band for 0.

I now outline a linear-time algorithm to find the shortest path through a corridor.
Each door in a corridor may share an endpoint with the previous door (or with the
first terminal of the wire, if this is the first door), and hence has either one or two
new vertices. We represent a corridor as the sequence of new vertices, together with
an indication of which vertices lie to the left of the path, and which lie to the right.

* The algorithm examines the vertices one by one, keeping track of left and right
boundaries for the shortest path. Suppose that a new vertex of the nth doorway,
call it 1, lies to the left of the path, and let t denote the initial terminal of the trace.
After examining!1, the left boundary is the shortest path through the first n- I
doorways from t to 1. Similarly, after examining a right vertex r, the right boundary
is the shortest path in the corridor from t to r. The boundaries are piecewise linear
paths, stored as sequences of vertices.

d Figure lb-4. A snapshot of Algorithm IV.
new Only active vertices are shown. Dotten lines

are the doors of the corridor, dark lines are
C boundaries for the optimal path, and light

/ lines are rays of visibility. If e is a left ver-
a tex, the algorithm will remove the points c

and d from the left boundary in favor of e.
If e is a right vertex, it will replace the right
boundary from a to x by the segments ab
and be.

40- Simple visibility tests are used to maintain the boundaries. The vertex at which

t, lie left and right boundaries diverge, and all vertices following it, are called active.

When a left vertex I is encountered, the algorithm finds the oldest active left vertex u
whose line of sight to 1 falls right of the left boundary. Next, it removes the portion
of the left boundary that follows v. If the right boundary blocks v from seeing 1,
then the left boundary is extended along the right boundary until ( is visible from
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the end of the left boundary. Finally, the point 1 is added to the left boundary.
Symmetrical actions occur upon examination of a right vertex.

Algorithm W, shown below, is a linear-time implementation of this path-finding
procedure. It uses stacks to represent the boundaries, and employs two simple geo-
metric tests to maintain them. The function R-TURN(p, q, r) determines whether

the point r lies to the right of the ray pq; similarly, L-TURN(p, q, r) is true when r

lies to the left of p"q. The algorithm assumes that consecutive doors are not collinear,
and that the corridor contains the final terminal of the trace as both left and right
vertices.

Algorithm W. (Finds a minimum-length path through a corridor.)
Input: Corridor vertices C[1..n]; initial terminal t.
Local variables: arrays of points L[1..n] and R[l..n]; integers b, i, 1, and r.
Output: the vertices L[1..3] of a piecewise linear path.

1. 1, r, b - ; L[/], R[r] +- t;
2. fori 1 to n do
3. if C[i] is a left vertex then
4. while I > b and R-TURN(L[l - 11, L[l], C[i])
5. doI-1-1;
6. while r > b and not L-TURN(R[b], R[b + 1], C[i])
7. do b - b + 1; 1 4-- 1 + 1; L[b] 4- Rb];
8. 1 - 1 + 1; L[l] +- C[i]
9. else (copy lines 4-8, exchanging L, 1, and L-TURN for R, r, and R-TURN).

One can extend Algorithm W to determine, for each feature endpoint that the
output path passes over, on which side of the path it lies. Proving the correctness
of Algorithm Wis straightforward.

Complexity analysis

The time and space performance of the RBE construction are dominated by
the processing of strands. Each trace segment passes through O(IFI) triangles, and
hence gives rise to O(IFI) strands. Hence the number of strands in the RBE is

obltat)(IFI ITI), and this bound is tight in the worst case. In practice the number should
' . ordinarily be much smaller. Algorithm W generates each strand in 0(l) time, and a

strand can be inserted into the RBE in time O(log ISI). (The log factor derives from

the use of height-balanced trees.) Therefore the construction of the RBE requires
time O(IF[ ITI log I) and space proportional to the size of the output, namely

O(IFI ITI).
Given a feature and a ray beginning on that feature, the RBE can produce the

crossing sequence of that ray in time proportional to its length. This performance is
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optimal for the purposes of my routing algorithm, but not for my routability testing
algorithm. To find the congestion of a cut Pq one need not compute its content or
the necessary crossings of that cut by traces. One need only compute the sum of the
widths of thE traces in the content of P-q. (Traces that appear more than once in the
content are counted according to multiplicity.) Hence for the purpose of routability
testing a condensed form of the RBE is needed. In this data structure, the strands
within each cable are not distinguished; instead each cable is assigned a width that

represents the sum of the widths of its strands. The condensed RBE also stores the
width of every possible crossing sequence a ray could have; this requires storing 2
numbers per feature segment and at most 2n numbers at each vertex of degree n.
These values can be computed in linear time from the widths of the cables, and the
correct value for a ray can be found in O(log ISI) time.

Thus the condensed RBE is a planar multigraph whose vertices are feature
endpoints and whose edges are cables. In this graph, at most three edges connect
each pair of vertices-three cables, or one feature and two cables. Since the number
of edges in a planar graph is at most linear in the number of vertices, the condensed
RBE uses only O(IFI) space. The workspace needed for its construction is also
O(IFI).

1C. Testing the Routability of a Sketch

A corollary to the sketch routability theorem shows that a sketch is routable if and

only if its nonempty critical cuts are safe. We say that the critical cuts are decisive,
because their safety and emptiness decide the routability of the sketch. A critical
cut is a cut that begins at a feature endpoint and travels to the closest point on
another feature. The distance is measured in the wiring norm; ties are broken using
the euclidean metric. For any reasonable wiring norm, the critical cuts can be easily
identified; there are O(IF12) of them.

rThus the problem of routability testing is reduced to the problem of checking the
safety and emptiness of a cut. For each critical cut, we need to know its congestion,
its capacity, and whether its endpoints lie on the same island. The last condition
is easy to test, because the islands of a sketch can be determined in O(IFI2) time.
The capacity of a cut is also easy to compute, for it depends only on the distance
between the cut's endpoints. I assume that the wiring norm of a vector can be
computed in constant time. The congestion, on the other hand, is relatively hard

to compute: for this we use the rubber-band equivalent of the sketch. This section
presents an algorithm to test the routability of a sketch in time O(IF1 log IFl),
given its condensed RBE.
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The scanning technique

To check each cut quickly, we use an idea from computational geometry called
scanning. This technique involves sweeping a scan line across the plane, while
keeping track of the objects that intersect the line. The data structure representing
those objects can then facilitate the computation of geometric quantities such as
the congestion of a cut. If that data structure can be updated and queried quickly,
it speeds up the algorithm by eliminating repetitive access to the objects being
examined. An event list drives the scanning process by specifying the order in
which objects enter and leave the data structure, and when the structure should be
queried. The algorithm constructs the event list before scanning, and simulates the
motion of the scan line by processing the events in order.

04(0

Figure Ic-1. A snapshot of Algorithm T. Here the algorithm is shown checking
the safety of the critical cuts that begin at p. Algorithm T simulates the motion
of a ray that sweeps around p like a radar beam. It uses data structures that
support fast insertion, deletion, and search to represent the features and cables
intersecting the scan ray. Whenever the scan ray includes a possible critical cut,
Algorithm T can quickly determine whether this line segment is a cut, and if so,
quickly compute its congestion.

For testing routability, the scan line will be a ray emanating from a feature end-
point p. As the ray sweeps through the RBE, it will occasionally intersect another
point q such that F is a critical cut. When this happens, the algorithm computes
the congestion and capacity of -q. If the cut is nonempty and the congestion is
greater than the capacity, then the sketch is unroutable. The congestion is the sum
of three quantities. The first is the total width of the cable strands that intersect

the scan ray strictly between p and q; it is obtained from the data structure repre-
senting the scan ray. The other two are the total widths of the crossing sequences of
the rays p-q at p and q- at q; they are provided by the RBE. To construct the event

list for scanning, the algorithm sorts all the relevant points in the RBE by angle
as seen from p. Objects that touch p are left out. Both the sorting and the data
structure accesses require only O(log ISI) time per object. Since there are O(IFI)
feature endpoints to scan from, the total execution time is O(IF12 log ISI).
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Details of Algorithm T

The condensed rubber-band equivalent of a sketch consists of two types of line
segments: features and cables. To store the objects crossing the scan ray, therefore,
our algorithm uses two dynamic sets, FS and WS. The FS data structure contains
features, while WS is a set of cables, each of which is weighted according to the total
width of the strands in the cable. The operations on FS are insertion, deletion, and

* MIN?(s), which returns true if s is the nearest segment in FS to the origin
p, and otherwise false.

If the scan ray intersects s at q, then MIN?(s) determines whether Pq is a cut. The
set WS supports insertion and deletion of cables, plus

• WIDTH(s), which returns the total width of the cables in WS lying strictly
between the query segment s and the origin p.

If some cable stretches from p to q, then WIDTH(s) returns the width of the cable
(if any) that crosses over the cut P'.

The set FS is easily implemented so that each operation runs in O(log IFI)
time by using a height-balanced search tree, sorted by distance from p. When two
segments touch at their endpoints, their order in FS is unimportant, and so the
closest segment to p can always be defined. Since features never cross, the order
of segments within the set does not change. To execute MIN?(s), first query the
condensed RBE to determine whether p is connected to a feature in the direction
of the scan ray. Return false if so, and otherwise return true if and only if s is the
first (leftmost) element of FS.

The structure WS can also be a height-balanced search tree. Since the number
of cables in the condensed RBE is O(IFI), each operation on WS will take O(log IFI)
time. The WIDTH operation can be implemented by storing in each node the total
width of the cables in its left subtree, plus the width of the cable stored in the
node itself. These values are easy to maintain under the standard tree-balancing
operations. The value WIDTH(s) can then be found by searching the tree for the* farthest segment that is strictly closer than s. Every time the search path branches

right or stops at a node, accumulate the quantity in that node. If the result is
positive, it is WIDTH(s). Otherwise let q be the point at which the scan ray
intersects s, and query the RBE for the width of the cable (if any) from p to q that
crosses over the cut 1'. Take the result to be WIDTH(s).

The event list for scanning around a point p consists of two types of events.
First, there is an event for every endpoint of a feature or cable in the RBE, except

those objects that intersect p. A point may correspond to more than one event if
two or more objects intersect there. Second, for each feature f there is an event
corresponding to a point q on f such that 11p - qJJ is critical. The line segment p-
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is called a possible critical cut; it is a critical cut unless it crosses a feature. The
points of the event list are sorted by angle as seen from p; angles are measured with
respect to some reference ray. Events at the same angle may be sorted arbitrarily.
Each point in the list is marked with a pointer to its segment, and whether it is the
first point of its segment, the closest point, or the last point. If the segment is seen
edge-on, either point can be "first".

Algorithm T. (Tests the routability of a sketch.)
Input: The condensed rubber-band equivalent of a sketch (F, T).
Local variables: Data structures FS and WS; event list EL; points p and q; fea-

ture f; cable c; congestion value t.
Output: Either true (routable) or false (unroutable).

1. Group the features into islands;
2. foreach feature endpoint p do
3. Initialize FS and WS to represent the reference ray;
4. Clear EL;
5. foreach feature f do
6. if f does not touch p then add events to EL for f;
7. foreach cable c do
8. if c does not touch p then add events to EL for c;
9. Sort EL;

10. foreach event e E EL (in sorted order) do
11. Update FS and WS;
12. if e is the possible cut R to feature f and MIN?(f) then
13. c +- WIDTH(f) + width of crossing sequences of - at p and ' at q;
14. if c > 0 or p and q lie in different islands then
15. if c > capacity of y then return false;
16. return true.

The operation of the algorithm is simple. It first finds the islands of the sketch
by checking which features intersect which others. This takes at most O(IF12) time.
Then, for each feature endpoint p, it initializes the data structures FS and WS,
constructs the event list for p, and simply scans through it, taking appropriate
actions for each event. If the event is the first or last one involving that segment,
the segment is inserted or removed, respectively, from the appropriate set. If the
event is the closest point q on a feature f, and MIN?(f) is true, then the algorithm
computes the congestion of the cut -q and checks whether this cut is empty. If not,
and if its congestion is greater than the capacity of , the algorithm signals that
the sketch is unroutable.

-43 -

1



Sketch Algorithms Chapter 1

1D. Routing a Sketch

This section presents a polynomial-time algorithm for producing a proper routing
of a sketch, given its rubber-band equivalent. The algorithm minimizes the length
of every trace in the routing, so that total trace length and the length of the longest
trace are simultaneously optimized. To process the sketch S = (F, T) the algorithm
uses O(IFI ITI) space and O(IF1 ITI log ISI) time; these bounds are nearly optimal,
for the output sketch may contain f(IFI ITI) trace segments. The output is guaran-
teed to be a proper routing if one exists, but otherwise it need not even be a sketch;
it may contain illegal intersections. Hence the sketch to be routed should first be
tested for routability using Algorithm T of the previous section.

The routing strategy

The routing algorithm examines the necessary crossings of cuts to generate con-
straints on the output traces. Every cut has a content, the sequence of traces that
it necessarily crosses. Suppose that the cut p t, q from the island P to the island Q
has content ( 01, ... , 0,, ). Any realization G of Ok makes a crossing with p C, q that,
in some sense, has i - 1 traces between it and P and n - i traces between it and Q.
Suppose this crossing occurs at the point x. If 0', is to be part of a proper routing,
x must be separated from both p and q as follows:

k-i

ix - p11 -width(P)/2 + width(Ok)/2 + E width(O0); (1-1)

'V n

liz - qll- width(Q)/2 + width(Ok)/2 + 1 width(0O). (1-2)~i~k+l

The set of points x on p satisfying these two inequalities is a doorway for the
trace 0,. It is empty if and only if the cut p" is unsafe. If the doorway T of P"
is not empty, the segments PI and T of its complement - y are called struts
for Ok.

Roughly speaking, we route each trace by finding the shortest route that passes
through all of its doorways. To make this process finite, we consider only the
doorways in certain special cuts.

Here we require that the wiring norm be piecewise linear. I assume that the
routing algorithm is given the wiring norm in the form of its unit polygon, the set
of vectors of norm 1. The unit polygon defines certain diagonal slopes, which are
the slopes of the lines through the origin that contain vertices of the unit polygon.
A cut is called diagonal if its slope is diagonal and one of its endpoints is a feature
endpoint. The routing algorithm considers only the doorways in diagonal cuts.

-44 -

% " .""



Section 1D Routing a Sketch
~q

q Figure ld-1. The doorway for a crossing of

e 0 a diagonal cut. All the traces (grey paths)
Y have unit width, and the tck marks divide

X into segments of unit length. The line
segment Yy is the doorway for the crossing

X C c between the cut pq and the trace 9.

(Hence its time and space complexity depend linearly on the number of vertices in
the unit polygon.) In other words, the algorithm finds for each trace the shortest
route that passes through its diagonal doorways.

To compute this route directly is difficult, so we do not consider all the doorways
at once. Instead we consider only one diagonal slope at a time. The diagonal cuts
of that slope split the routing region into trapezoidal strips; the rubber band for a
trace passes through the strips in a particular order, and hence it has a particular
sequence of doorways. These doorways form a corridor as shown in Figure ld-2.
The shortest path through this corridor is called a partial realization of the trace,
though like rubber bands, it may touch features other than its terminals. The
remarkable fact is that one can merge the partial realizations of a trace, one for
each diagonal slope, to form the optimal, or ideal, realization of that trace. The
complete routing algorithm is summarized below.

Figure ld-2. The corridor formed by a sequence of doorways for a trace. Light
lines represent diagonal cuts, and medium lines are features. Where consecutive
doorways are collinear, an extra doorway is added to preserve the applicability of
Algorithm W. A doorway may consist only of a single point, but it still contributes
both left and right vertices to the corridor.
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Algorithm R. (Produces a detailed routing of a routable sketch. )
Input: the RBE of a routable sketch S; the wiring norm's unit polygon.
Output: the ideal realization of each trace in S.
Local variables: array of partial realizations P.
Subroutines: Algorithm W is used in line 6.

1. foreach diagonal slope s do
2. Scan over the RBE with a line of slope s, producing doorways for all traces;
3. foreach trace 0 do
4. p +- rubber band of 0;
5. Sort the doorways of slope s for p, producing a corridor;
6. P[O, s] -- shortest path through this corridor;
7. foreach trace 0 do
8. Merge the paths P[O, sI to form the realization of 0.

Constructing doorways and partial realizations

For each diagonal slope s, Algorithm R finds the doorways of slope s by scanning
over the RBE with a line of slope s. The scanning technique is very similar to that
used by Algorithm T, so I discuss it only briefly. We maintain the features and
cables that cross the scan line in a pair of height-balanced trees. A feature enters
or leaves the scan line when the scan line intersects one of its endpoints, say p.
When this occurs we find the diagonal cuts of slope s incident on p by searching the
feature tree for closest features not containing p. Having found a diagonal cut pt, q,
we determine the content of pt q as explained in Section lB. To do so we must know
the sequence of cables that cross prt, q strictly between p and q; a search of the cable
tree will provide this information quickly. Finally, from the content of p I. q we can
construct the doorways for these traces in linear time. (The doorways are defined
by equations (1-1) and (1-2).)

Next Algorithm R combines the doorways of each rubber band into a corridor
for the corresponding trace. No sorting is actually required. Consider a trace 0
with rubber band p. Each crossing of the diagonal cut N by p can be associated
with a particular strand of p. Hence every doorway for 6 is associated with a point
on a strand of p. By placing the doorways for each strand in a simple queue, the
queues for p can be concatenated to yield the correct ordering of doorways for 6, and
thus form a corridor. The shortest path through this corridor, which Algorithm W
produces in linear time, is the partial realization of 0 for the diagonal slope s.

Merging the partial realizations

In its final phase, Algorithm R combines the partial realizations of each trace
to form the output traces. Let us define a joint of a piecewise linear path to be a
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(i) A sketch to be routed. (ii) Its rubber-band equivalent.

(iii) Partial realizations for slope +1. (iv) Partial realizations for slope -1.

(v) The ideal realizations. (vi) Realizations for a grid model.

Figure ld-3. The major steps in the routing of a sketch. The wiring model here
is rectilinear; its diagonal slopes are +1 and -1. All features and traces have
unit width. Dark segments and points are features; grey lines are traces and their
partial and ideal realizations; dashed segments are struts; and circles mark vertices
of partial realizations that appear in the ideal realizations. Part (vi) shows that
the ideal realizations can be altered so that they run in a grid. Algorithm R does
not implement this process, but I discuss it in Chapter 10.
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point where two segments of the path meet. The desired realization of a trace 0 is
a piecewise linear path whose joints are chosen from among the joints of the partial
realizations of 0. Let a' denote the partial realization of 0 for the diagonal slope s,

and let denote the ideal realization of 0.
There is a simple geometric procedure for determining whether a joint of a' is

retained as a joint of . Let UY and Y'c be consecutive segments of a, with x the joint
between them; then x is one endpoint of a doorway -xy in a cut Pq. We say that a
turns toward p at x if p is not exterior to the angle Laxc. The path a turns toward
either p or q at x, but not both. Assume a turns toward p. Then x is retained if
and only if the segments U7 and Y'c touch the polygon I z : 1iz - qll = J1x - qfJ } at
x alone. To check this condition, it suffices to compare the slopes of U- and Yc to
the slopes of certain segments in the unit polygon of the wiring norm.

q

q

q q

*.....
p

Figure ld-4. Evaluating the joints of a partial realization. Here the partial
realization a has a joint x on the diagonal cut pq, and a turns toward p at x. We
associate with x the two polygons { z: 1iz - pil = IIx - pl } and f z: iz - qII =
ix - qJJ }, shown here in grey. Part (i) shows the range of angles that a may make
at x if x is to appear as a joint in the full realization. Similarly, part (ii) shows
the range of angles that a may make at consecutive joints x and x' if the segment
xx is to appear as a segment of the full realization.

It remains to find the correct ordering of the joints of . Three simple rules
govern this process. First, the joints of that come from a partial realization a
have the same order and orientation in as in a. By the orientation of a joint
I mean whether the path turns to the left or the right at the joint. Second, the joint
of that follows a joint x of o' is either another joint of a, or else it comes from
a partial realization a' chosen as follows. If turns left at x, then a' corresponds
to the next diagonal slope counterclockwise from s. Otherwise, if a turns right
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Section 1D Routing a Sketch

at x, then a' corresponds to the next diagonal slope clockwise from s. The third
rule determines when two consecutive joints of a are consecutive in . Let x and x'
denote these two joints, and let p and p' denote the corresponding feature endpoints
toward which a turns. The joints x and x' are consecutive in if and only if the
line segment between them intersects the polygons { z : 11z- Pll = Jjx - pll } and
f z' : 1iz' - P'l = 1x ' - p'Il } on their boundaries only. Again, this can be checked
by comparing the slope of TP to the slopes of certain segments in the unit polygon
of the wiring norm.

An extension of the third rule allows the merging process to start and finish. Let
t be the first (or last) terminal of 0. The first (or last) joint x of has the property
that the line segment Fx intersects the polygon { z : liz - p[l = Jx - pl } only on
its boundary, where p is the feature endpoint toward which a turns at x. Together
these rules determine a unique piecewise linear path . It can be produced in linear
time from the partial realizations of 0, provided that the input sketch is routable.

Attempting to route an unroutable sketch

If the input to Algorithm R is the RBE of an unroutable sketch, then one
of two things can happen. One possibility is that the process of merging partial
realizations gets stuck: either it reaches a point where none of the available joints
can be added, or it reaches the final terminal of the trace without having used all
the available joints. The other possibility is that the merge completes successfully,
but that the traces it has produced form an improper sketch. I conjecture that the
latter possibility never arises, so that Algorithm R can always determine whether
its input sketch is routable. If this conjecture proves true, then one need not apply
Algorithm R to the input of Algorithm T to test for routability. One advantage
of Algorithm T, however, is that it identifies the unsafe cuts that make the sketch
unroutable. Algorithm R does not have this ability, and it can consume far more
space than Algorithm T.

Complexity analysis

Algorithm R uses at most O(jF ITI) space to route a sketch (F, T). We men-
tioned in Section 1B that the detailed RBE is no larger than this. The number of
doorways generated by phase one is also O(IFJ ITI), because each wire segment in
the original sketch can cause at most one crossing of each diagonal cut. The output
sketch fits in the same amount of space because its wire segments have endpoints
on distinct doorways. On the other hand, sketches exist whose only detailed rout-
ings occupy O(IFI ITI) space, so the space bound of Algorithm R is asymptotically
optimal.
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All the operations performed by Algorithm R take time linear in the size of its
data structures, except the sorting that precedes the scanning operations, which
requires logarithmic time per object. The time taken by Algorithm R is therefore
at most 0(IFI ITI log ISI). In practice, the number of crossings between diagonal
cuts and wires should be much less than IFj ITj, and the algorithm should corre-
spondingly faster. I have no experimental data to this effect, however.

1E. Efficiency Concerns

Seen from a theoretical standpoint, the algorithms for sketch routing and routability
testing are quite efficient. Their worst-case running times are similar and seemingly
close to optimal: 0(n 2 log n) on input of size n. In particular, the resource bounds
of Algorithm R are optimal to within logarithmic factors on some inputs; there exist
sketches of size n, like that in Figure le-1, whose only proper realizations have size
fQ(n 2 ). From a practical standpoint, however, the sketch algorithms do not seem
as good. Most programs that operate on integrated circuit designs have empirical
running times close to linear, or at worst O(n' / ') on input of size n. Since VLSI
circuits are so huge, slower algorithms cannot be tolerated except when applied to
small cells within a larger design.

•~ ~ ~ ~ ~ ~ ~~~~~. , ..' ....*. ' .. ..J. TT r?:'*?"

.... .. .. ...

4.. . ... . . .. . .

9. .9 . ....

0... t T . . .. ..

.. ... .. .. . .. -... .. . .. *..."7'

Figure le-1. A small sketch whose proper realization is large. If the distance
between adjacent dotted lines is 1 unit and the unit polygon is square, then the
only proper realization of the sketch on the left is the sketch on the right.

This section suggests two ways of speeding up routing and testing routability
of sketches. One approach concerns worst-case performance. Algorithm R can be

modified, without changing its underlying strategy, to eliminate the logarithmic
factor in its time bound. Probably the running time of Algorithm T can also be
improved to 0(n 2 ), at the cost of using E(n 2 ) space in every instance. The other
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approach concerns average-case performance. It begins with an investigation of the

expected performance of Algorithms T and R on practical circuits, and then explores
three methods for speeding up the performance bottleneck, which turns out to be
Algorithm T. Two are described here; Section IF is devoted to the third. All three

methods involve paring down the number of critical cuts whose congestion needs to
be computed. The result is a set of algorithms for the sketch routability problem
whose average-case performance ranges from O(n log n) to 0(n s/2 log n), depending
upon assumptions concerning the placement of traces and features in a typical
sketch. I should emphasize that these results are not based on any experimental
evidence; I have not implemented any sketch algorithms. Instead I derive estimates
of running time and space usage from models of the distribution of features and
traces in the sketches input to Algorithms T and R.

Eliminating logarithmic factors

Recently I realized that the rubber-band equivalent is not the best data struc-
ture for Algorithm R to use in computing doorways. A faster method is to compute
for each diagonal slope s a realization (not proper) whose traces cross the diag-
onal cuts of slope s as seldom as possible. Section 9B explains how to compute
in time and space O(JFJ JTJ) a structure called a reduced intersection graph that
represents the necessary crossings of those traces and cuts. The content of a di-
agonal cut of slope s can be read off directly from the reduced intersection graph,
as can the sequence of such cuts that each trace passes through. As a result the
corridors for partial realizations can be computed in time O(IF[ ITI) per diagonal
slope. Since the only logarithmic factors in Algorithm R came from constructing
and scanning over the RBE, the result is an algorithm for sketch routing that runs
in time O(IFI ITI) plus O(IF log IFl) to scan for diagonal cuts. In fact, its running
time is essentially proportional to the number of crossings between traces in the
input sketch and diagonal cuts. The only reason not to adopt this approach is that
my sketch compaction algorithm, currently the only client of Algorithm R, applies
Algorithm R to a rubber-band equivalent rather than a sketch.

A similar improvement may be possible in Algorithm T. Leo Guibas [151 has
suggested that the scanning in Algorithm T can be replaced by a topological sweep
[11], reducing the worst-case running time from O(n2 log n) to 0(n 2 ). To take
advantage of this speedup, and to obtain a similar speedup in the construction of
the condensed RBE, that structure must be represented in the form of an adjacency
matrix. Hence O(n 2 ) space is required in every instance, as opposed to O(n) space
for Algorithm T as it stands. Consequently this improvement is of academic interest
only.
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The proper measure of input size

The sketch algorithms so far described-for constructing the RBE, testing rout-
ability, and routing-all run in essentially quadratic time, but this running time
arises from different causes in each case. When constructing the RBE, the number
of crossings between trace segments and doors determines the running time to within

a logarithmic factor. When testing routability, the time complexity is determined
by the number of pairs of features in the condensed RBE, again with an added
logarithmic factor. And when routing a sketch, the relevant quantities are the
number of strands in the RBE and the number of crossings between trace segments
and diagonal cuts. Of these quantities, only the number of pairs of features is
generally 0(n 2). Likewise, though the space usage of Algorithm R is 0(n 2 ) in the
worst case, it is actually proportional to the number of crossings between traces and
certain cuts (doors and diagonal cuts).

I argue that a sketch algorithm whose resource usage is nearly proportional
to the number of crossings between traces and 0(n) cuts is really quite efficient.
Whether the expected number of such crossings is close to linear in n depends
on one's source of sketches. But in any case, that quantity is a more reasonable
measure of sketch complexity than n, the number of feature and trace segments in
the sketch. The reason is that one can encode quite complicated sketches with just
a few segments. Each trace segment in the input sketch can, in principle, span the
width of the sketch. One would prefer a measure of sketch size that accounted for
the lengths of trace segments. Probably no such measure is convenient, but if one
adopts this viewpoint, the complexity of Algorithm R, in particular, seems much
smaller. So the only algorithm that could really stand improvement is Algorithm T.
The bottleneck is the repeated scanning around feature endpoints for critical cuts,
which takes 0(n log n) time per feature whether such critical cuts are found or not.

Typical sketches

What properties of practical sketches can we exploit to speed up Algorithm T? I
submit that there are at least three: density, uniformity, and locality. By density I
mean that the components in typical circuit layouts are tightly packed. Depending
on how the layout components are represented in sketches, the only features visible

from a given feature may be a few of its nearest neighbors. (If almost all features
are points, then visibility is essentially unlimited. But if many features are line
segments, then expected visibility is bounded independently of sketch size. This fact
is independent of density, but the constant-the expected number of features visible
from a given feature-does depend on density.) In this case the expected number
of critical cuts is 0(n). The second principle, uniformity, says that the elements
of a sketch are distributed nearly uniformly in a rectangular region of small aspect
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ratio. Applied to the rubber-band equivalent, it implies that the average number
of cables crossed by a critical cut is 0(1) if visibility is restricted, and O(vr./) if
visibility is unrestricted. Finally, locality suggests that local constraints almost
always dominate over nonlocal ones. In other words, it is highly unlikely that a
long nonempty critical cut is unsafe without some shorter nonempty critical cut
being unsafe also. None of these principles can be justified formally, but I think
that programmers of circuit design systems will agree that they are reasonable
assumptions.

Checking critical cuts: two approaches

The locality principle has immediate application to routability testing. Rather
than scanning the entire sketch from each feature endpoint, one could scan only
part of the sketch each time. For example, one might first divide the components
of the RBE into bins, each bin corresponding to a square region of the sketch. For
each feature endpoint, one could then include only the components in its bin and
the adjacent bins in the scanning operation. This technique should be fazt, but
it has the drawback of relying on the locality principle for correctness, not just
performance. If A. unsafc, nonempty, critical cut is found, the sketch is proven to
be unroutable. But if no such cut is found, the sketch is not necessarily routable.
Finding a good tradeoff between speed and risk of error would probably require
extensive experimentation.

A less risky approach to routability testing relies instead on the assumption of
density. Rather than locating the critical cuts by scanning, we obtain them from
the visibility graph of the sketch. The visibility graph (V, E) of a sketch (F, T) is
a graph whose vertices are the endpoints of features in F and whose edges are the
line segments in F and all straight cuts between endpoints of features in F. The
edges emanating from each feature endpoint are sorted in clockwise order. One can
compute the visibility in time O(IEI + IF) log IFI) and space O(JEj) by the methods
of [14]. The running time averages O(IFI log IFI) if our sketch is dense, meaning that
the expected number of cuts between feature endpoints is E(IFI), and is ®(IF 2 ) in
the worst case. Given the visibility graph (V, E) of a sketch, the critical cuts can be
enumerated in time O(IEI). For each feature endpoint p, one can list the portions
of fe!atures visible from that endpoint, and check which of those portions contain
the closest points to p on their respective features.

Having identified the critical cuts, one must compute their congestions without
scanning. The simplest way to do so, based on what we already know, is to make
separate queries to the condensed RBE for each critical cut. The condensed rubber-
band equivalent of a sketch is like an embedded planar multigraph. We may consider
it one since although some of its arcs overlap, they are circularly ordered at the
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nodes they connect. Some of the faces of this graph are polygonal, and some are
degenerate (where two edges connect the same feature endpoints). In O(IF log IFI)
time we can add edges so as to triangulate the polygonal faces, keeping the size of
the whole graph linear in IFI. Now we compute the dual graph: the graph whose
nodes are the faces of the original graph and whose edges represent adjacency across
the original edges. This computation takes linear time.

Every cut now corresponds to a path in the dual graph whose length is the
number of cables crossed over by the cut. One can find this path in time proportional
to its length, simply by walking through the dual graph. The congestion of the cut
p- is the sum of the widths of the cables that P crosses over, plus the widths of
the crossing sequences ef - and q-. (As usual, when a cable lies within p, it may
or may not contribute to cong(p), depending on which of the three possible cables
from p to q it is.) The crossing sequence terms are provided by the condensed RBE
at a cost of O(log n) time per cut. We conclude that after O(n log n) preprocessing
operations on the condensed RBE, the congestion of a cut can be computed in time
O(log n) plus 0(1) per cable it crosses over.

Using both data structures-the visibility graph and dual of the condensed
RBE-we obtain an algorithm for testing sketch routability whose performance
is potentially far superior to that of Algorithm T. Under the most optimistic as-
sumptions of density and uniformity, the expected running time is 6(n log n). In the
very worst case, 9(n') time might be consumed. One drawback to this approach is
the complexity of implementing the algorithm that constructs the visibility graph.

IF. Faster Routability Testing

This section describes a very powerful technique for speeding up routability testing
in piecewise wiring norms, the kind we use. It results in a routability testing algo-
rithm that runs in time O(n3/ 2 log n) on typical sketches of size n, without needing
any more than linear space.

The key to routability testing is finding a small set of decisive cuts. So far we
have considered methods for identifying and checking the critical cuts in a sketch.
Critical cuts are decisive but difficult to enumerate, since every pair of features
can potentially generate a critical cut. To determine which of the minimum-length
paths between features are actually critical cuts, one must either consider all pairs of

*O features (as Algorithm T does by scanning) or construct something like a visibility
graph. By exploiting a property of cuts under piecewise linear norms, we can
eliminate many pairs of features from consideration, whether or not they generate a
critical cut. This property, called shadowing, was discovered by Cole and Siegel [6]
and independently by me. Some line segments in the sketch are shadowed by
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other features, and even if they are critical cuts, they need not be checked. If
the arrangement of features in the sketch is close to uniform, then most cuts are
shadowed, and one can quickly generate a decisive set of unshadowed cuts.

Definition of shadowing

The principle of shadowing is that no cut T need be checked if there is a point r
on a feature such that

11p- qJJ = 11p- rl + J~q - i l. (1-3)

If the point p is considered fixed, the point r casts a shadow consisting of all points q
which, together with p and r, satisfy (1-3). We say that the cut P is shadowed
(by r). Typical shadows for the rectilinear (L') wiring norm are pictured in Fig-
ure lf-1. If the norm 11 I were the euclidean norm, this shadow would be nothing
more than the ray starting at r and pointing away from p. But since the wiring
norm is piecewise linear, shadows can have substantial size. More to the point,
if the features in a sketch are evenly distributed, then the number of unshadowed
features, as seen from a given feature endpoint, is likely to be small: O(log IFI) on
the average. Later in this section I justify this bound and explain why shadowed
cuts may be ignored.

Figure lf-1. Shadows in the rectilinear
norm. With respect to the central point,
each of the other points casts a shadow,
shown as a shaded region. Shadows in-
clude their frontiers. Darker shades rep-
resent multiple overlapping shadows. The
dashed lines are the lines of diagonal slope
passing through the central point. Points on
these lines are shadowed only by other such
p oints.

We use shadowing to find a small decisive set of cuts for a sketch. This setI contains the diagonal cuts in the sketch, of which there are O(IFI), and the unshad-
owed cuts between feature endpoints, of which there are typically O(IF log IFI).
The expected time needed to find these cuts is also O(IFI log IFI). One can com-
pute the congestion of the decisive cuts from the dual of the condensed RBE, as
described in Section 1E, at an average cost of O(V/JT) time per cut. If the cuts
are checked as they are produced, none of our data structures grows larger than

O(IFI). The result is an algorithm for sketch routability that consumes only linear
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space and O(IF1312 log IFI) time, plus that needed to construct the condensed RBE,
for typical sketches.

Scanning for unshadowed cuts

Simple scanning algorithms suffice for finding the decisive cut set. Diagonal
cuts, in particular, are easy to find by scanning with lines of diagonal slope as
Algorithm R does. I now present an algorithm that enumerates the other desired
cuts. Shadowing works best when there are only two diagonal slopes, as when the
wiring norm is rectilinear. In this case, scanning for unshadowed cuts takes time
O( Fl log IFI) plus 0(1) per cut found. For simplicity I illustrate the algorithm
using the taxicab (L) norm, defined by ll(x, y)l1 = Ixl + ly1, which is the rectilinear
norm rotated through 7r/4 radians and rescaled by V/2. In the taxicab norm the
points that can shadow a cut Pq are the points in the rectangle whose sides are
aligned with the axes and which has p and q at opposite corners. I also simplify
matters by assuming that all features are points. It matters little if the algorithm
outputs a line segment that is not really a cut, because the fact that it is not a cut
will be discovered when trying to compute its congestion.

We compute all the unshadowed cuts between feature endpoints by scanning over
the sketch from left to right with a vertical line. Actually, we skip some unshadowed
cuts that are diagonal and produce some cuts that are just on the boundary of
being shadowed, but these discrepancies cause no problems. The scan considers
only feature endpoints. At all times during the scan, we maintain a data structure
that contains every feature endpoint lying left of the scan line, except that where
two or more feature endpoints have the same y-coordinate, only the rightmost is
kept. These feature endpoints are kept sorted by y-coordinate, presumably in some
height-balanced tree to enable fast insertion. Each point in the structurc also has
two links to other points in the structure, an upward link and a downward link.
The upward link of p points to the feature endpoint above it and strictly to its right
that is closest to p in y-coordinate. If no such point exists, then the upward link
is nil. The downward link of p is similar, but points to the closest feature endpoiit
below it and strictly to its right. See Figure lf-2(a).

Adding a new feature endpoint to the structure is simple. Figure lf-2(b) illus-
trates the process. Call the new endpoint q. One first finds the feature endpoints
left of q that lie just above and below q in y-coordinate. Denote them by p+ and p-,

,OU respectively. They are identical if q has the same y-coordinate as a point already
considered. Next one finds the unshadowed cuts incident on q from the left, while
at the same time updating the up and down links of the existing points. Beginning
at p+, follow the upward links until reaching nil or a point on the scan line. All the
points in this chain have unshadowed cuts to q, and their downward links must be
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Section 1F Faster Routability Testing

(a)N

Figure lf-2. Scanning for unshadowed cuts. As the scan line (dark vertical line)
moves to the right, the network of upward and downward links (light lines) is
updated. All links point to the right; null pointers are not shown. Crossed-out
points have been superseded by points farther to the right having the same y-
coordinates. In (b), the pointers shown as dotted lines are being replaced by the
darker links, which also represent the unshadowed cuts incident on q from the left.

modified to point to q. Next, starting at p-, follow the down links until reaching
nil or a point on the scan line. All the points in this chain have unshadowed cuts
to q, and their upward links should now connect them to q. If p+ = p-, one deletes
this point. Finally one sets the upward and downward links of q to nil.

The correctness and complexity analysis of this method are straightforward.
Processing one feature endpoint takes time O(log IF I) per feature endpoint plus 0(1)
time per cut produced. Applied to each feature endpoint in turn, it produces all the
unshadowed cuts between them except those that are vertical. In the taxicab norm,
vertical cuts between feature endpoints are diagonal cuts. Because the diagonal
cuts are gathered separately, there is no harm in ignoring them here. Similarly, the
horizontal cuts generated in the scan for unshadowed cuts may be dropped to avoid
duplication.

More complicated wiring norms

No fundamental changes are needed in the scanning algorithm if the unit poly-
gon of the wiring norm is a parallelogram and not a square. The unit polygon
is a parallelogram if and only if the wiring norm has exactly two diagonal slopes.
One simply redefines one diagonal slope to be "vertical" and the other to be "hor-
izontal", and reinterprets the terms 'above', 'below', 'left', and 'right' accordingly.
Equivalently, one may rotate and skew the sketch and its wiring norm so that one
diagonal slope actually is vertical and the other is horizontal, and apply the inverse
transformation to each cut generated.

Scanning for unshadowed cuts is somewhat more complicated when the unit
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polygon of the wiring norm has more than four sides. In this case several scans
are needed to produce all the cuts. Each scan produces the unshadowed cuts whose
slopes lie in a certain range. For each diagonal slope s, we need a scan that generates
the unshadowed cuts whose slopes lie between s and the diagonal slope t immediately
clockwise from s. In this scan we pretend that s and t are the only diagonal slopes,
and throw away the generated cuts whose slopes do not lie clockwise between s and t.
(Which cuts are shadowed is independent of all properties of the wiring norm except
the diagonal slopes.) The remaining unshadowed cuts are, in fact, unshadowed in
the original wiring norm. Since some of the generated cuts have to be thrown away,
we can no longer claim that the scanning algorithm runs in time O(IF log JFJ) plus
0(1) per unshadowed cut. Nevertheless, the average number of cuts thrown away,
as well as the average number retained, is only O(IFI log IFI) per diagonal slope.
We now justify this figure.

The number of unshadowed cuts

The average-case time complexity of the new routability testing method depends
foremost on the number of unshadowed cuts. More accurately, it depends on the
number of line segments output by the scanning procedure, which is approximately
the number of unshadowed cuts that would exist if each feature endpoint were a
feature unto itself, i.e., if all features were points. We now estimate this quantity;
it turns out to be O(n log n) where n = O(IFI) is the number of feature endpoints.
As a model of the distribution of feature endpoints, we assume that n points are
independently and uniformly distributed in the unit square I x I. The size of
the square is irrelevant to the present analysis. We wish to estimate the expected
number of pairs (p, q) of these points for which the cut pq unshadowed. Since
expectation is additive, regardless of independence, it suffices to determine the
chance that a particular cut p is unshadowed, and multiply this chance by (n).

An approximate analysis shows that the probability of a cut being unshadowed
is O(ln(n)/n). Let p and q be two of the randomly placed points, and let Cpq
denote the rectangular region with diagonal p" whose sides are aligned with the
axes. Define a random variable A whose value is the area of Olpq. The cut P is
output by the scanning procedure only if the inside of Opq contains none of the n

0* points except p and q. This event has probability (1 - A)n - 2 . Define the random
variables X and Y to be the horizontal and vertical separations, respectively, of p
and q. Almost all the contribution to the chance that -pq is empty comes from
small X and Y. We are willing to ignore constant factors, so there is no harm in
pretending that X and Y are uniformly distributed in [0, 1]. If this were true, then
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for a E [0, 1] we would have

Pr[A < a] 1 dy dx

=jldy dxj+ 1 dy dz

ja + a/xdx = a(1 - Ina).

Differentiating with respect to a gives - In a, so a - - In a is a good estimate of
the density function for A. Hence the probability that q is unshadowed is on the
order of

(- a)'-'(- Ina) da u"- 2 ln(1 - u)du.

Now we integrate by parts, choosing the antiderivative (un - 1 - 1)/(n - 1) for Un- 2 ,

and thus obtainI' n-2 -n-, +'/o "--1 -,,
- "-ln(1-u)- ln(1-u) + -du.

The bracketed term vanishes, and we are left with the integral

- 1 -- id= - 1(1 ++U2 +...+Un-)du

1  g 1 innn- u-n - I I--1

k=1

The expected number of unshadowed cuts among the n points is therefore (n) times
O(ln(n)/n), which is O(n log n).

This analysis changes only quantitatively, not qualitatively, if the wiring norm
is not the taxicab norm. Because of the way we break down a complicated wiring
norm into wiring norms with two diagonal slopes each, it suffices to consider a wiring
norm whose unit polygon is an arbitrary parallelogram. Then the points that can
shadow a cut p- all lie in a parallelogram Opq with p and q at opposite corners.
This parallelogram takes the place of Opq. The distribution of the area of Opq is
asymptotic to that of Opq as area approaches 0, and hence the chance that P is
unshadowed remains O(ln(n)/n). Therefore the expected number of cuts generated
while scanning is O(n log n) per diagonal slope.
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An explanation of shadowing

Why should the unshadowed cuts between feature endpoints and the diagonal
cuts form a decisive set? The answer to this question has two parts. The first part
notes that the set of all cuts between feature endpoints, together with the diagonal
cuts, constitute a decisive set. For lack of a better word, let us call these cuts
pivotal. Pivotal cuts are strongly related to critical cuts. Recall that a critical cut
is a cut from a feature endpoint to the closest point on another feature as measured
in the wiring norm, with ties broken using the euclidean norm. As you might guess,
the method of tiebreaking is arbitrary. Instead one can use a tiebreaker that always
picks a diagonal cut or a cut between feature endpoints. For if p is any point and Q
is a feature not containing p, there is a point q E Q minimizing j[q - p[i such that
either q is an endpoint of Q or the slope of p is diagonal. Hence the pivotal cuts
form a decisive set for the same reason that critical cuts do. (See Proposition 8b.4.)

The second part of the answer explains why shadowed cuts need not be checked.
Shadowing derives its power from the following lemma.

Lemma: Let pq, pr, and - be cuts in a sketch. Assume that r shadows p and
that the inside of the triangle Apqr is free of features. If p-q is unsafe and nonempty,
then either F or Tr is unsafe and nonempty.

The idea behind the lemma is the following. Let P, Q, and R denote the islands
containing p, q, and r, respectively. Then by equation (1-3) and the definition of
capacity, we have

capacity of pq = capacity of PT + capacity of ir + width of R. (1-4)

On the other hand, Figure lf-3 suggests that

congestion of P < congestion of p + congestion of qi + width of R, (1-5)

since the trace p is no wider than its terminal R. This inequality can be proven
using the machinery of Section 4F (Proposition 4f.1) and Chapter 8. Subtracting
the relation (1-5) from equation (1-4), we infer that the margin of safety of P' , the
difference between its capacity and congestion, is at most the sum of the margins of
safety of p" and i-'. Hence if F is unsafe-if its margin of safety is negative-then
either P or - is unsafe. Moreover, if p' is also nonempty, one of PT and - is unsafe
and nonempty. I leave this last deduction as an exercise.

The lemma gives us a condition under which a shadowed cut p, need not be
checked. Suppose the cut p- is shadowed by a point s. Let r be the closest point
on a feature to p-, excluding p and q, in the closed region bounded by the triangle
Apqs. Then pT and - are cuts, the inside of Apqr is empty, and r shadows p- .
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r Figure lf-3. An inequality concerning con-
gestion. If the inside of Apqr is free of fea-
tures, then all traces (darkly shaded paths)
that necessarily cross j' also necessarily
cross either I or i'i, with at most one ex-
ception: one trace (lightly shaded path) can

. mhave r as a terminal.p q

Hence the lemma applies to p, q, and r. It shows that q cannot be unsafe and
nonempty unless either pf or q"F has the same properties. So we can avoid checking
Fq- if we can determine that neither TF nor i' is both unsafe and nonempty.

Now we invoke a special property of pivotal cuts, which can be traced all the way
to Lemma 7c.3. If any cut in the sketch is unsafe and nonempty, then the sketch
has a pivotal cut that is also unsafe and nonempty, simply because the pivotal cuts
are decisive. The special property is this: the unsafe and nonempty pivotal cut is no
longer than the original cut, as measured by the wiring norm. To ensure that PT and
- are safe, it therefore suffices to check pivotal cuts that are shorter than W and

-- , and are therefore shorter than p. In other words, we may remove p from our
decisive cut set, which consisted originally of the pivotal cuts. The same principle
applies to all shadowed pivotal cuts, and hence the unshadowed pivotal cuts form
a decisive set. This set contains precisely all the unshadowed cuts between feature
endpoints and all the diagonal cuts, since diagonal cuts are never shadowed.

I
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Chapter 2

Topological Preliminaries

Point-set topology and elementary homotopy theory form the basis for all the math-
ematical work in this thesis. Since point-set topology is more widely known, and
too large a subject to be covered here, I assume familiarity with its basic concepts
and the relationships among them. The reader should know the definition of the
terms basis, component, embedding, homeomorphism, path, and quotient space,
the concept of a local property, and what it means for a space to be compact, con-
nected, Hausdorff, metric, normal, or path-connected. For those readers who wish
to refresh their memories, I have provided definitions of these terms in the glos-
sary. An excellent reference, both for point-set topology and for an introduction to
homotopy theory, is the text by Munkres [38].

Unlike the other chapters, this chapter contains little or no original material;
it merely encapsulates known results for future reference. As the nomenclature
of topology is not entirely standardized, the first part of the chapter describes the
terms and symbols I have adopted. Everyone who wishes to study the mathematical
parts of this thesis should' read these definitions, because Chapters 3 through 8
depend on them. The rest of the chapter reviews some elementary results from
different branches of topology. Sections 2A and 2B introduce homotopy theory at
an elementary level. I have provided proofs for the easier results to help the reader
assimilate the definitions. Section 2C discusses some facts about plane curves that
will be used from time to time. Lastly, Section 2D distills the results we will
need concerning topological manifolds. The proofs in the final section rely on the
machinery of homology theory, but no homology theory is used elsewhere in this
thesis.

Topological spaces and maps

A space always means a topological space, and a map on topological spaces
always means a continuous function. The following are standard topological spaces:

" the unit interval I = [0, 11,
" the euclidean spaces R", for n > 1,
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9 the euclidean half-spaces H -- { -(l,... , Xn) E Rn" Xn > 0 }, for n > 1,
* the spheres S = {x E Rn+ : lx = 1}, for n > 0.

In every case, the superscript denotes the topological dimension of the space itself,
and not the dimension of the space in which it is embedded. I reserve the right
to use each of the symbols R, H, and S without a superscript to mean something
other than the spaces listed above. In particular, R 1 should be distinguished from
R, which need not denote the real line. When a space such as {x} contains only
one element, I frequently omit the braces and write simply z.

A subspace A C X is a retract of X if there is a map r: X --+ A, called a
retraction, such that r(a) = a for all a E A. The spaces I and R' are absolute
retracts in the following sense. If I or R I is embedded in a normal space X as a
closed subspace A, then A is a retract of X.

For every subspace A of a topological space X, the following subspaces of X are
defined.

" Its interior Int A, the union of the open sets contained in A.
* Its closure C7 A, the intersection of the closed sets that contain A.
* Its frontier, or "topological boundary", which is Fr A = Cl A - [nt A.

The term 'boundary' is reserved for use with manifolds.
I employ a few convenient devices for describing maps. If E(t) is any expression,

then 't III E(t)' denotes the function whose value at t is E(t). The domain and
range of this function should be inferred from context. If F: X x Y --+ Z is a
function with two arguments, then F(xo, • ): Y --+ Z is the function y i-. F(zo, y),
and F(. , yo): X --+ Z is the function x i-+ F(x, yo). This "dot" notation generalizes
to more complicated expressions. If f: X --+ Y and U C X, then flu denotes the
restriction of f to U. We write f(U) for the set Im flu = { f(u) : u E U }. The
symbol idx denotes the identity map on the space X.

Paths and their images

A path a is always a continuous function with domain I, and should not be
confused with its image Im a. When we speak of a path intersecting a set or another
path, however, we are implicitly referring to the image of that path. The endpoints
of a path a are the points a(0) and a(1), and are considered as an ordered pair.
Thus a and /3 have the same endpoints if a(0) = /3(0) and a(1) = /3(1). I write
: A - B to mean that a is a path with a(0) E A and a(1) E B. The middle of

the path a is the set Mida = a((0, 1)).
The distinction between paths and their images is reflected by the distinction

between linear paths and line segments. In a space such as R/ that has a linear
structure, the linear path x c, y is the path t 1-1 (1 - t)x + ty, whereas the line
segment Y is the set Im(x t> y). We say a is piecewise linear if there is a partition
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0 = to < t, < "". < t, = 1 of I such that a is linear on each interval [ti- 1, ti]. If this
partition is minimal, so that a is not linear on any interval [ti-2, ti], then we call the
points a(t,) the vertices of a. A piecewise linear, injective path is called simple.
A loop is a path whose endpoints coincide; the loop a is simple if a is piecewise
linear and a(s) = a(t) implies s = t or {s, t} = {0, 1}. A polygon is either a simple
loop in R2 or the image of such a loop, depending on context. A subset of R2 is
polygonal if it comprises the inside of a polygon together with some or all of its
frontier.

I now define three important operations on paths. If a is a path in X, and
a, b E I, then the path obtained by varying the argument of a from a to b is the
path a,:b: I -+ X given by

aa:b(t) = a((1 - t)a + tb).

We call a:b a subpath of a. If a and /3 are paths in X satisfying a(1) -- /3(0), then
their concatenation is the path a * /3: I -+ X equaling

f a(2t), if t <

Note that (a *3)0:1/2 = a and (a * /3)1/2:1 = /3. The reverse of a path a, denoted
a, is al:o.

Given a way to measure the length of a linear path, I define the arc length of a
path a to be the least upper bound of the lengths of piecewise linear approximations
to a. (A piecewise linear path /3 approximates a if /3(t) = a(t) for each vertex /3(t)
of /3.) If a is a path in R 2 , the euclidean arc length of a is denoted lcl. The arc
length of a in an arbitrary norm 11 - is denoted [[a[l. One reason for using norms
rather than arbitrary metrics is to make the arc length of a linear path equal the

i distance between its endpoints: in any norm 11 - we have iip >qi = 1p - q1. A

path a of finite arc length is canonical if lao:tl = t - a for every t E (0, 1].

Geometric primitives

Because piecewise linear paths are central to this work, we need a few more
definitions relating to them. Some of these definitions supersede less precise def-
initions given in Section 1D. Let a be a piecewise linear path. A joiat of a is a
point s E (0, 1) such that for no open interval (x, y) containing s is the subpath CX:3
linear. A segment of a is a subpath t,.t with s < t such that each of s and t is a
joint of a or a point in {0, 1}. Now let a,:, and a,:t be consecutive segments of a
piecewise linear path a: I -+ R'. We say that a turns at a if neither a,:, nor a,:t
is constant, and a(s) does not lie on the linear path a(r) > a(t). If a turns at s,I - 64 -
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Section 2A Homotopies and the Fundamental Group

then the rays from a(s) through a(r) and a(t) form an angle of measure less than ir

(and perhaps of measure 0). The path a* turns away from a point z E R' at s if x

is exterior to this angle, and otherwise a turns toward z at a.
Whenever a path has two "sides", it makes sense to talk about another path

crossing over it. And at least in the neighborhood of any point on a nonconstant

segment, every piecewise linear path does have two sides. We say that a crosses

over /9 at a point x E I if there is an interval [s, t] containing x such that Im a.t C /9
but the paths a0 . and al:t approach / from opposite sides.

2A. Homotopies and the Fundamental Group

The notion of a rough routing for a wire is rooted in the mathematical idea of path

homotopy. Hence in the of study planar wiring problems involving rough routings,

we look first at the homotopy theory of paths. This section defines the appropriate

notions of homotopy for paths and general maps, gives a precise definition of sim-

ple connectivity, and provides several methods for proving that a space is simply

connected.

Path homotopy

Roughly speaking, two paths are path homotopic if one can be continuously

deformed into the other without moving its endpoints. One can make this notion

precise by expressing the continuous deformation as a continuous function.

Definition 2a.1. Two paths a, : 1 - Y are path homotopic, denoted a =p /9,
if there is a map F: I x I --+ Y such that F(. , 0) = a, F( . , 1) = 0, and the maps

F(0, •) and F(1, •) are constant. The map F is called a path homotopy between
a and

A path homotopy F defines a family of paths { F(., t) : t E I } with the same

endpoints. As t varies from 0 to 1, the path F(., t) varies in a continuous manner.

A good example of a path homotopy is given by the following lemma.

Lemma 2a.2. For every path a and all points a, b, c E I we have

Cia:b * ab:c =P Ca:c.

Proof. A path homotopy between aa:b * ab-c and Ca:c is the map H defined by

H(.,t) = aa:h(t)*ah(t):c where h(t) = (1 - t)b+ t(a + c)/2. 13
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The relation of path homotopy is an equivalence relation, as one can check
directly. To prove that a _p 3 implies /3 =p a, for example, it suffices to note that
if F is a path homotopy between a and 3, then the map (s, t) -4 F(s, 1 - t) is a
path homotopy between 3 and a. The equivalence class of a path a under path
homotopy is denoted [a]p, and is called the path class of a.

The fundamental group

We now define a concatenation operation for path classes. Path concatenation
respects path homotopy, in the sense that if a =p -y and 3 -p 6, then a* 3 -p "y* 6 .
Thus the concatenation [alp * [3lp of two path classes is well defined by setting
[alp * [,3]p = [a * 3]p. The important properties of this operation are listed below;
they can be derived from Lemma 2a.2.

(1) Associativity: ([a]p * [/]p) * [yp = [a]p * ([/3]p * ['y]p) whenever these ex-
pressions are defined.

(2) Existence of identities: [alp * [al:l]p = [alp = [ao:olp * [a]p for any path
class [alp. Thus [al:i]p and [ao-o]p are right and left identities, respectively,
for [ap.

(3) Existence of inverses: [a]p * [&]p = [ao:o]p and [&]p * [alp = [ai:i]P for any
path class [alp. Thus [&Jp is both a left and right inverse for [a]p; its own
inverse is [alp, since the reverse of a is a.

Equations (1) through (3) are called the groupoid properties of concatenation.
They would make concatenation a group operation, except that the concatenation
of two paths is not always defined. To obtain a group we need only restrict ourselves
to paths that begin and end at a specific point.

Definition 2a.3. Let xo be a point of the space X. A path in X whose end-
points coincide at xO is called a loop at xo. The fundamental group of X at x0,
denoted 7r,(X, x0), is the set of path classes of loops at xO, under the operation of
concatenation.

The identity element of ir1(X, x0) is the class [t - xolp of the constant loop at xo.
A loop at x0 is called inessential if it falls in this class, and essential otherwise.

A natural question to ask is how the fundamental group 7r,(X, x0) depends on
the choice of base point x0. For a path-connected srace, the answer is that the
fundamental groups at different base points are isomorphic. To see why, let a be a
path in X from x to y, and consider the map h,,: 7r,(X, x) --* r(X, y) defined by

h. Qy Ip) =[&*-*a]p

- -- Y ~-.
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This map is a group homomorphism; one simply computes, using the groupoid
properties of concatenation, that

h.( [-1p)= [ [b(. 6). p

= h([]p) * h.([6]p).

Furthermore, if /3 = 6, then hp and h, are inverses, so h, is actually an isomorphism.

Definition 2a.4. A space X is simply connected if X is path-connected and
7r,(X, xO) equals 0, the trivial group, for some point Xo E X.

Because all the fundamental groups of a path-connected space are isomorphic,
a simply connected space has trivial fundamental group at every point. In other
words, every loop in a simply connected space is inessential. As a consequence we
deduce a very useful property of simply connected spaces.

Lemma 2a.5. In a simply connected space, any two paths having the same
initial and final points are path-homotopic.

Proof. Let X be a simply connected space, and let a and /3 be two paths in X
from x to y. Then /3 */3 is a loop at x, and because 7r,(X, z) is trivial, we have
/3 * p 3o:o. Hence by the groupoid properties of concatenation,

[/3]p = [/3*/3i:,lp = [/3* (a * a)p = [(/3-R*)*a ]p = [/30:0 o*]p = [a]p.

Therefore 3 is path-homotopic to a. 0

Induced homomorphisms

Not only can we associate with each space a fundamental group, but to each
map between spaces we can associate a homomorphism between the corresponding
fundamental groups. Suppose f: X -- Y is a map of topological spaces, and suppose
f(xo) = Yo. We usually express this fact by writing f: (X, x0 ) -4 (Y, yo). Then f
induces a homomorphism

f*: 7r,(MX o)---+ 7r (Y, yo),

defined by f,([a]p) = (foalp. This map is well defined, because if a is a loop at x0,
then f o a is a loop at yo; if /3 is another path in X, and H is a path homotopy
between a and /3, then f o H is a path homotopy between the paths f o a and f o/3.
The map f* is a group homomorphism because fo (a*/3) = (foa)*(f o/3), which
implies

f.([a*/31p) - f.([a~p)*f*([/3]p).
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The correspondence between maps of spaces and homomorphisms of fundamen-

tal groups is actually a "functor", which means that it has the following functorial
properties:

(1) It commutes with composition, that is, (g o = o fr.

(2) It takes identity maps to identity maps, so id* = id.

One important consequence of these properties is that the fundamental group of

a space is a topological invariant, meaning that homeomorphisms preserve it. For

suppose that f: (X, x0) - (Y, yo) is a homeomorphism with inverse g: (Y, yo) -'

(X, x0). Then the maps g, and f* are inverses: by property (1), we have f* o g,* -

(f o g), = id,, which by property (2) is the identity homomorphism on w1(Y, yo);

similarly g* o f = (g o f), is the identity on wl(X, xo). Therefore f. gives an

isomorphism between the fundamental groups of X (at xo) and Y (at yo).
Similar reasoning shows that if A is a retract of X, and xo E A, then the

map i.:r,(A,xo) --+ ir(X,xo) induced by the inclusion i:(A,xo) -- (X,xo) is a
monomorphism (one-to-one). For if r: (X, xo) -- (A, 1o) is the retraction, then
roi = idA, whence roi, is the identity on rl(A, xo). Since Ker i. C Ker(r~oi.) = 0,
the kernel of i, is trivial. As a corollary, every retract of a simply connected space
is simply connected.

Homotopy of general maps

There are many types of homotopy relations, path homotopy being only one of
them. As we are concerned primarily with homotopy among paths and loops, the
following results will be used mainly for proving spaces to be simply connected.

Definition 2a.6. Let X and Y be topological spaces, and let A C X. Two

maps f, g: X --+ Y are homotopic relative to A, written f g rel A, if there is a
map F:X x I --+ Y such that F(-,0) = f, F(.,I) = g, and FAx = idAxl. If

A = 0, we simply write f " g. The map F is a homotopy between f and g.

Though the concept of homotopy seems to apply only to maps, it can tell us

something about a space when applied to the identity map on the space. A subspace
A of a space X is a deformation retract if there is a retraction r: X --- A such that

idx - i o r rel A, where i: A -- X is the inclusion map. The homotopy between r

and idx is called a deformation retraction. The fundamental group of a deformation

retract satisfies an even stronger property than that of a retract.

Lemma 2a.7. If A is a deformation retract of X, then the inclusion ': (A, zo) --

(X, x0) induces an isomorphism of fundamental groups.

Proof. Because A is a retract of X, the map i.: r,(A,x0) --. r,(X, x0) is a mono-

morphism. It remains to show that i, is an epimorphism (onto). Let /3 be a loop at
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x0 ; we prove that [/#]p is in the image of i. by applying the deformation retraction
to /3. Let F: X x I --+ X be a deformation retraction of X to A, and define a
map G: I x I --+ X by G(s,t) = F(lg(s), t). Then G is a path homotopy, since for
e E {0, 1}, the point G(e,t) is F(/0(0), t) = F(xo, t) = xo (because F is the identity
on A x I). Moreover, F is a homotopy between /3 and a loop a: I -- X whose image
lies in A: we have G(. ,0) = F(a(. ),0) =/, and G(., 1) _ F(X, 1) _ A. Therefore
3 -p a. Let a': I- A be the path t . a(t) in A. Then [a']p E 7r,(A, xo), and
i.([a']p) = [i o a'] = [alp. Since [a]p = [03]p, this means ['3]p E Im i,. 0

Lemma 2a.7 gives us one way to show that a space is simply connected. Say
that a space X is contractible if some point of X is a deformation retract of X.
As an example, any starlike or convex subset of Rn is contractible. For if X C Rn
contains a point z such that the line segment YT lies in X whenever x does, then
the map F: X x I - X defined by F(x, •) = x c, z is a deformation retraction of X
to z. We call it a contraction of X to z.

Lemma 2a.8. Every contractible space is simply connected.

Proof. Let F: X x I --+ X be a contraction of X to the point z E X. Then
X is path-connected because any point x E X can be joined to z by the path

,= F(x,.); for any two points x,y E X, the concatenation p. * P5 is a path
between x and y. Because z is a deformation retract of x, the previous lemma
shows that X and z have isomorphic fundamental groups. There is only one path
in z, so 71r(z,z) is trivial. Hence 7r(X, z) = 0 also. D

Extension lemma

We conclude the section with a criterion for a loop to be inessential.

Lemma 2a.9. Let f: Fr(I x I) --+ X be any map, and let b be the loop

6= (.,0) * (1,.)*(.)(0, .): I - I x I.

The loop f o 6 is inessential if and only if f has an extension F: I x I -+ X. 03

2B. Covering Spaces

In order to compute the fundamental groups of spaces that are not simply con-
nected, one usually introduces the notion of a covering space. As we shall see, the

.
fundamental group of the circle S' is easily determined using this device. But I
introduce covering spaces for a different reason. In essence, a simply connected cov-
ering space provides a spatial representation of path homotopy classes. It thereby
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converts problems involving homotopy constraints, such as my single-layer wire
routing problems, into problems without homotopy constraints.

This section provides a very brief introduction to the theory of covering spaces.
It defines covering spaces and the notion of lifting to a covering space, and proves
the important theorem that the lifting of a map is unique if the lifting is determined
at a single point. It then gives conditions for a map to be liftable, and notes that
paths and homotopies of paths can always be lifted. Some applications of lifting are
also presented. Finally, it states some fairly mild conditions under which a space
has a simply connected covering space, and shows that in the presence of those
conditions, that covering space is essentially unique.

Definition of covering space

Definition 2b.1. Let p: M --* X be a surjective map. An open set U in X
is evenly covered by p if p-(U) can be partitioned into disjoint open sets, each
of which is mapped homeomorphically onto U by p. If every point of X has a
neighborhood that is evenly covered by p, then p is called a covering map, and M
a covering space of X.

A covering space is often called simply a cover; the space it covers is called the
base space. Locally, a covering space looks like a union of disjoint copies of the
base. It follows immediately that a covering map is a local homeomorphism. For
suppose that p: M -* X is a covering map, and let v be a point of M. Take U to
be a neighborhood of p(v) that is evenly covered by p, and partition p-1 (U) into
disjoint open sets that are mapped homeomorphically onto U by p. One of these
open sets, call it V, contains v. Then V is a neighborhood of v, and plv is a home-
omorphism onto its image, which is open. This makes p a local homeomorphism.
As a consequence, M has all the local properties that X has.

Perhaps the simplest interesting covering map is 0: R 1 -- S1 given by

0(t) = (cos2rt, sin2,rt),

which maps the real line onto the circle. We show that every point of S1 is evenly
covered by 0. Let so represent the point (1,0) of S 1. Then S' - so is a neighborhood
of every point of S 1 but so, and is evenly covered by 0. For 0- 1 (S1 - so) is R 1 - Z,
which is the disjoint union of the open intervals { (n, n + 1) : n E Z }, and each

O' of these intervals is mapped homeomorphically onto S' - so by 0. Similarly, the
neighborhood S1 - (-1,0) of so is evenly covered by 0. Therefore 0 is a covering
map. A related covering map, pictured in Figure 2b-1, is 0 x idj: R' x I -+ S 1 x I.
This map can be thought of as compressing an infinite helical surface in R 3 onto an
annular region in R 2 .
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rMM(0)

Figure 2b-1. Lifting to a covering space. The helical surface, which extends
infinitely in both directions, is a simply connected covering space for the annular
region below. The covering map is downward projection. Also shown is a path a
in the annulus and one of its liftings 5 to the covering space. There is one such
lifting for each point in the inverse image of a(0).

Lifting

One can study objects in a base space by transporting those objects to some
covering space. If p: M --+ X is a covering map, and g: Y --+ X is a map into X, a
lifting, or lift, of g is a map : Y -- M satisfying p o g = g. For example, if g is a
path in X, then j is a path in M that "sits over" g. (See Figure 2b-1.)

Theorem 2b.2. (Uniqueness of Liftings) Two liftings of a map from a con-
nected space are equal if they agree at one point.

Proof. Let p: M -- X be a covering map, and let g, g': Y - M be two liftings of a
map f: Y --+ X. Let Y- be the set of points in Y at which g and g' agree, and let
Yo be its complement. To prove the theorem, it suffices to show that Y= and Y#
are both open in Y. For if Y is connected, it follows that either Y= or Y# is empty.
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Figure 2b-2. A complicated covering space. The surface pictured above is part

of the simply connected covering space for a disk with two circular holes removed.

The "layers" of this covering space are indexed by the free group on two generators

(which is also the fundamental group of the base space). Only a few layers are

shown.

- 72 -

......



Section 2B Covering Spaces

Let y be a point of Y, and choose a neighborhood U C X of f(y) that is evenly
covered by p. Because f is continuous, there is a neighborhood V of y such that
f(V) C U. We may assume that V is connected. Now let W be the component of
p-'(U) that contains g(y). Because g(V) is connected, and g(V) g p-1 o f(V) _

p-I(U), the set g(V) must lie entirely within W. Similarly, if W' is the component
of p-'(U) that contains g'(y), then g'(V) _ W'. If y E Y*, then W In W' = 0, so
g(V) n g'(V) = 0 and therefore V is a neighborhood of y in Y#. If instead y E Y=,
then W = W', whence g(v) = g'(v) for all v E V because p o g = p o g' and p1w is
injective. In this case, V is a neighborhood of y in Y=. Thus Y= and Y* are both

open in Y. D

A natural question is: When can a map be lifted to a covering space? The
following theorem gives a complete answer to this problem for a large class of spaces.
Recall that a space is locally path-connected if it has a basis of path-connected sets.
For example, any convex subspace X C R' is locally path-connected, because every
open ball in X is convex and hence path-connected.

Theorem 2b.3. (Lifting Theorem) Let p: (M, mo) --* (X, xo) be a covering
map, and let Y be connected and locally path-connected. The map g: (Y, yo)
(X, xo) has a lifting W: (Y, yo) --+ (M, ino) if and only if

g.(iri(Y, yo)) _ p.(7r,(M, mo)). 0

In particular, the conclusion always holds if Y is simply connected and locally
path-connected, for then Y is connected and Im g, is trivial. For each point m0 E

p- (xo), the map g: (Y, yo) -+ (X, xO) can then be lifted in such a way that g(yo) =
m 0. In particular, every path a: I -- X and every path homotopy F: I x I -I, X can
be so lifted: the spaces I and I x I are convex, and hence locally path-connected,
contractible, and simply connected (Lemma 2a.8). Actually, the proof of the lifting

theorem requires these facts, and the following proposition as well. The proof of
the proposition, although it relies on the lifting of path homotopies, is nevertheless

*4 instructive.

Proposition 2b.4. Liftings of homotopic paths are path-homotopic if they
agree at one endpoint.

projections a = p o a and -y = p o 5 are path homotopic. Let F: I x I -+ X be a

path homotopy between a and -y, and suppose that a(e) = i(e) where e is either 0
or 1. Choose the base points (e, 0), a(e), and &(e) for I x I, X, and M respectively.

Then F lifts to a map F: I x I -* M satisfying F(e,0) = a(e). I claim that F is a

path homotopy between i and 7.

- 73 -

1kl



Topological Prelimin, es Chapter 2

* f(e, • ) is constant. Both t i-4 F(e, t) and t - 5(e) are liftings of the constant
path t '-+ F(e, t), and they agree at t = 0. The interval I is connected, so by
uniqueness of liftings (Theorem 2b.2), the liftings are identical. In particular,

(1) e)

* F(., 0) = i. Both & and F(.,0) lift a, because poF(.,O) = F(.,0) = a,
and the two liftings agree at e. By (2b.2) again, they must be the same map.

* F( ,1) =. Both 5 and F(., 1) lift f, and they agree at e.

9 F(1 - e, ) is constant. Both t -+ F(1 - e,t) and t '-* F(1 - e,0) lift the
constant path t '-4 F(1 - e, •). Because the liftings agree when t = 0, they

Vjmust be equal. 03

Armed with this lemma and the covering map 0: (R 1 , 0) "-# (S 1 , so), the reader
should be able to prove the following result. (Hint: lift each loop a at so to a path
beginning at 0, and consider a(1).)

* IA Proposition 2b.5. The fundamental group of the circle is isomorphic to the

integers under addition.

Existence and uniqueness of covering spaces

What makes the proof of Proposition 2b.5 work is that the circle has a simply
connected covering space (the real line) with a natural group operation (addition).
Most spaces do not come with as nice a covering space as R'. Nevertheless, simply
connected covering spaces can often be constructed out of the space of paths in the
base space. The following theorem gives sufficient conditions for this construction to
work. The conditions may look scary, but in fact they are satisfied by almost every
decent space. We say that a space X is semilocally simply connected if every point
x E X has a neighborhood U such that the map i,: 7r,(U, x) -+ 7r,(X, x) induced
by the inclusion i: U --* X is trivial. Of course, this condition holds if U is simply
connected.

0" Theorem 2b.6. Every connected, locally path-connected, semilocally simply
connected space has a simply connected covering space. 13

There is a notion of equivalence among covering spaces of a fixed base space.
This notion is stronger than that of homeomorphism, because it also requires that
the correspondence between the covering spaces respect the covering maps. More

r specifically, if p: M --* X and q: N -- + X are covering maps, then M and N are

equivalent if there are inverse maps f: M -- N and g: N --+ M such that q o f = p
and p o g = q. Equivalent covering spaces are topologically indistinguishable. The
following proposition shows that the simply connected cover of a decent space is
essentially unique.

-74-

%O (



Section 2B Covering Spaces

Proposition 2b.7. All simply connected covering spaces of a connected, locally
path-connected space are equivalent.

Proof. (Lift the covering maps.) Let X be connected and locally path-connected,
let p: (M, mo) -+ (X, xo) and q: (N, no) --+ (X, xo) be covering maps, and suppose
that M and N are simply connected. The maps p and q are local homeomorphisms,
so M and N have all the local properties that X has. In particular, M and N are
locally path-connected. We now apply the Lifting Theorem (2b.3), lifting p to a
map ': (M, mo) -, (N, no), and also lifting q to a map i' (N, no) --+ (M, mo). By
the definition of lifting, p o j = q and q o g = p. I claim that g" and " are inverses,
making M and N homeomorphic. Because p o j o " = q o = p, we find that j o "
is a lift of the map p. But idM also lifts p, and because 'o g(xo) = q'(yo) = xo, the
two maps agree at the point xo. Since M is connected, they must be identical, by
Theorem 2b.2. Entirely symmetrical reasoning shows that idy = j'o ". 0

Covering transformations

Proposition 2b.7 not only shows that the simply connected cover of a decent
space is unique, but also implies that this cover must be highly symmetrical. If
p: M --+ X is a covering map, a homeomorphism h: M -- M that lifts p is called
a covering transformation of M. Suppose that M is simply connected and X
is locally path-connected. For any two points io, m, E M that have the same
image x0 under p, Proposition 2b.7 gives us a covering transformation h: M -- M
such that h(mo) = mi. (Consider the covering maps p: (M, m0) --+ (X, xo) and
p: (M, mi) --# (X, xo).) Hence different lifts of the same path or homotopy are
related by a covering transformation. This fact allows us to ignore the base point
of the covering space; all base points are equivalent.

We conclude this section with another simple application of the Lifting Theorem.
It shows how one can lift subspaces as well as maps.

Lemma 2b.8. Let p: M --+ X be a covering map, and let C be a simply
connected, locally path-connected subspace of X. For every path component A
of p-(C), the map p: A --+ C is a homeomorphism.

Proof. Let c be a point of C, and pick a E A C p-'(C). Lift the identity map on
C to a map i: (C,c) -* (p-1 (C),a). Because C is path-connected, so is i(C), and
hence i(C) C A. We have po i = idc, and it remains to show i op = idA. The map
i op:(A,a) - (A,a) lifts p:(A,a) - (C,c), because po(iop) = (poi)op = idcop.
Hence idA and iop are two liftings of p: A -+ C, and they satisfy idA(a) = a = iop(a).
Therefore idA i o p by uniqueness of liftings. 03
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2C. Paths and Loops in the Plane

This section collects miscellaneous results concerning the topology of subsets of the
plane. Most are of the "obvious but nontrivial" variety, like the fact that a simple
loop is inessential in a subspace of the plane if and only if that subspace includes
the inside of the loop. These results can be justified using standard topological
methods. One result, however, we derive from a theorem of real analysis. Our
result says: Within any nonempty family of canonical paths in a bounded subspace
of tha plane, there exists a sequence of paths converging to a path whose euclidean
arc length is no greater than that of any path in the family. We use this result in
proving the existence of things like rubber bands and ideal routes, which are defined
as the minimum-length paths in certain families.

Facts about polygons

Geometric topology, the study of topology within euclidean spaces, is another
source of mathematical insight into single-layer wire routing problems. In these
problems the routing region-a subspace of the plane-has important topological
properties that one often takes for granted. Perhaps the most famous of these is
the Jordan Curve Theorem, stated below for the case of piecewise linear loops.

Theorem 2c.1. (Jordan Curve Theorem) If A is a simple loop in R2, then
R - Im A has two components, one bounded and one unbounded, whose common
frontier is Im A. D
The bounded component is called the inside of the loop, and the other component
is called the outside. A kind of converse to Theorem 2c.1 is the following.

Lemma 2c.2. Let X C R 2 be a finite union of polygonal regions. If A is
a bounded component of R2 - X, then there is a simple loop in X whose inside
contains A. D

* We shall also need the following results.

Proposition 2c.3. If A is a simple loop in R2, then Im A is a retract of R2 -
inside(A). D

Proposition 2c.4. Let A and p be simple loops in R2 . If Im,4 C inside(A),

0. then Im p is a deformation retract of R 2 - inside(p) - outside(A). 13
Theorems like these belong to geometric topology, and are somewhat messy

to prove rigorously, even when stated (as here) for piecewise linear objects only.
Unfortunately, I have no reference for these particular results, though they follow
from well-known properties of polygons. One reference for geometric topology is [35.
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Enclosure

Another intuitive property of planar loops is this: A simple loop A whose inside
contains a point p cannot be deformed so that p ends up outside, except by crossing
over p. More formally, if p lies inside A, and if the simple loop A is loop-homotopic
to A in R 2 - p, then p lies inside p.

We can obtain a more general result by extending the notion of "inside" to loops
that are not simple. Say a loop A in R 2 encloses a connected subset F of R 2 - Im A
if A is essential in R 2 - F. Now suppose A =-p p as paths in R 2 - F. Then either
both loops are essential or both are inessential in R 2 - F, so A encloses F if and
only if p does. The next proposition shows that the definition of enclosure agrees
with the definition of inside for simple loops.

Proposition 2c.5. Let A be a loop in R 2 , and let S denote the space R2 -Im A.
If A encloses a connected subset F of S, then F lies in a bounded component of S.
The converse holds if A is simple. D

As a consequence we obtain a very intuitive result concerning simple loops.

Corollary 2c.6. A simple loop A is inessential in a subspace S of R 2 if and
only if S includes the inside of A.

Proof. Suppose that S includes inside(A), and let F denote the outside of A. By
Proposition 2c.5, A does not enclose F, which means A is inessential in R 2 - F.
Hence A is inessential in the larger space S. Now suppose that S does not include
inside(A), and let F be a component of R' - S lying inside A. By Proposition 2c.5
again, A encloses F, which means that" A is essential in R 2 - F. Hence A is essential
in the smaller space S. 0

An elementary property of enclosure is the following: If A and p are loops based
at the same point, and A does not enclose F, then A * i encloses F if and only
if p does. More generally, suppose A1, ... , An are loops based at the same point,
and let F be a connected set that intersects none of them. The concatenated loop
Al * ... * An can enclose F only if some Ai does, and it does enclose F if exactly
one Ai does.

Piecewise linearity

When dealing with piecewise linear paths, we shall often want our homotopies
to be piecewise linear also. A map F from I x I into a linear space is piecewise
linear if I x I can be divided into triangles so that F is linear on each triangle. If
F is piecewise linear and a is any linear path in I x I, then F o a is a piecewise
linear path. The following lemma allows us to assume, in many cases, that our
homotopies are piecewise linear.
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Lemma 2c.7. Let S C R 2 be the union of finitely many triangles, and let
F: I x I -+ S be a homotopy. If the paths F(O, .), F(1, .), F( . ,0), and F( ., 1)
are piecewise linear, then there is a piecewise linear map G: I x I --* S that agrees
with F on Fr I x I.

Outline of proof. (For those familiar with simplicial complexes.) One first con-
structs a triangulation of S and a triangulation of I x I such that the map FIFr IX

is simplicial. Then one applies the Simplicial Approximation Theorem to F. The
result is a piecewise linear map G that agrees with F on Fr I x I. 0

Minimization of arc length

One idea that was already put to use in Chapter 1 is the construction of the
minimum-length path satisfying some condition. The following proposition gives us
a tool for constructing a minimum-length path as a limit of other paths. It relies
on a classical theorem from topology and real analysis called Ascoli's Theorem.

Proposition 2c.8. Let A be a nonempty family of canonical paths in a bounded
subspace S of R 2, and put I = inf{ IAI : A E A }. Then A includes a uniformly
convergent sequence of paths whose limit has euclidean arc length at most 1.

Proof. Let A = (6,)'j be a sequence of paths in A whose euclidean arc lengths
converge to 1. We use Ascoli's theorem, taken from [46], to show that the sequence
(6n) has a convergent subsequence.

Definition: Let $ be a family of functions from a space X to a metric space Y with
metric a. The family $ is equicontinuoua if for every point x E X and every e > 0, there
is a neighborhood N of z such that a[f(x), f(y)] < c for all y E N and all f E $.

Theorem: (Ascoli's Theorem) Let f be an equicontinuous family of functions from
a separable space X to a metric space Y. Let (f,) be a sequence in 4o such that for each
* E X the closure of the set { f,(x) : n > 0 } is compact. Then there is a subsequence
(fnk) that converges pointwise to a continuous function f, and the convergence is uniform
on each compact set of X.

In our case, the family of functions is A, the space X is the unit interval I, and
the space Y is S with the euclidean metric. We check the conditions of Ascoli's
Theorem in order. Let u be a bound on the arc lengths of the paths 6i. The family
iA is equicontinuous, because if x E I and f > 0 and b E A, every point y in the

open set I n (z - f/u, x + c/u) satisfies

1b(X) - b()l _ 1,6X:. = Iy - X1. 1,1 < (f/u) 161 _< E

The space I is separable because the set of rationals in I is countable and dense
in I. Finally, the set { 6,(x) • n > 0 } lies in the bounded set S, which implies that

its closure is compact.
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We conclude that Ascoli's Theorem is applicable to the sequence (6). It yields

a subsequence (ak) of (6,,) that converges to a path a. Because I is compact, the
convergence is uniform.

It remains to show that lal < 1. Let -f be any piecewise linear approximation
to a, and let e be any positive real number. The lengths of the paths ak converge to 1,
so there is number K such that for all k > K, we have IaI < I + e. Suppose -y has

m segments. Because the functions ak converge uniformly to a, for all sufficiently
large k we have Iak(t) - a(t)I < e/m for all t E I. In particular, if the ith vertex
of -y is -7(t,) = a(ti), we may choose k so that Iak(ts) - a(ti)I < e/m for all i. The
points ak(ti) divide ak into small pieces that correspond to the segments of -t. The

length of the piece from ak(ti) to ak(ti+l) is at least the length of the corresponding
segment of -y, less 2e/m. Summing these inequalities, we find that

1-H lokj + 2c < l + 3e.

Because e was arbitrary, it follows that every piecewise linear approximation to a
has length I or less. Therefore the arc length of a is at most 1. 03

2D. Topological Manifolds

Almost all the spaces dealt with in this paper are manifolds, with or without bound-
ary. A manifold is a very nice kind of topological space; it looks locally like Rn or Hn.
This section establishes the properties of manifolds that will be needed later on.

Definition 2d.1. If x is a point in a space X, a patch about x is a homeo-
morphism of a neighborhood of x with an open set of H". An m-manifold with
boundary is a nonempty Hausdorff space in which every point has a patch. The
boundary of an m-manifold with boundary is the set of points x having a patch h
such that h(z) E Rm -' C Hn. Such a patch is called a boundary patch.

I will always use the term m-manifold to mean m-manifold with boundary. The
boundary of an m-manifold M, which is an (m-1)-manifold, is denoted Bd M. A
classical theorem [39, p. 207] shows that if x E M has a boundary patch, then every
patch about x is a boundary patch.

Theorem 2d.2. (Invariance of Domain) Let U C R'1 be open, and let f: U --

Rn be continuous and injective. Then f(U) is open in Rn and f is an embedding. 03

To see how this theorem applies to manifolds, let h: U -- V and h': U' - V' be
two patches about the same point x in an m-manifold. If h is not a boundary patch,
then there is a neighborhood W of h(x) in V that is open in R-. The map h'oh-'Iw
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that sends W into Hn is continuous and injective, and hence by Theorem 2d.2, its
image is open in Rn. But this image contains h'(x), and therefore h'(x) does not
lie in R" - . Thus h' is not a boundary patch.

One can infer that M - Bd M is open in M, for any manifold M. For if x E
Al - Bd M, there is a patch h: U -+ V about x whose image does not intersect R' -'.
This homeomorphism h is a nonboundary patch for every point in U, and hence no
point of U lies in Bd M. But U is a neighborhood of x. Therefore M - Bd M is
open. Note that H' itself is an m-manifold, and Bd H'm = R - .

Facts about manifolds

Our first lemma concerns covering spaces of manifolds. If f: M -- X is a map
from a manifold M, then Bd f denotes the restriction of f to Bd M.

Lemma 2d.3. If p: M -+ X is a covering map and X is an m-manifold, then
* j M is an m-manifold and Bd p: Bd M --+ Bd X is also a covering map.

Proof. Consider any point v of M. Because p is a local homeomorphism, v has
a neighborhood V that is mapped homeomorphically by p onto a neighborhood U
of p(v) Choose a patch h: U' --- h(U') about p(v). Then p maps the neighborhood
Vnp - ' (U') of v homeomorphically onto UAU', which itself is homeomorphic under h
to the open set h(U n U') of H'. Hence h o p, when restricted to V in p-1 (U), is a
patch about v. Therefore M is an m-manifold. Furthermore, if p(v) E Bd X, then
h o p maps v to a point of Bd H', so v lies in Bd M; conversely, if p(v) 0 Bd X,
then h o p(v) Bd H m , so v l Bd M. Therefore p maps Bd M onto Bd X.

It remains to show that the surjection Bd p: Bd M --+ Bd X is a covering map.
Let x be a point of Bd X, and choose a neighborhood U of x in X that is evenly
covered by p. Then U n Bd X is a neighborhood of x in Bd X, and p- (U iBd X) =
p-I(U) n Bd M. Say p-1 (U) = (D Va, where the Vc, are open in M and p: V --+ U
is a homeomorphism for each a. (Direct summation denotes disjoint union.) Then
P-I(UIn BdX) = ( l(V, n BdM); each set V in BdM is open in BdM, and is

* carried to U In Bd X by Bd p; and Bd p restricted to V,, n Bd M is an embedding,
because it is the restriction of the embedding pIv, to a closed subset of V. Therefore
U in Bd X is evenly covered by Bd p. E3

Manifolds have many wonderful properties. We shall have occasion to use only
a few. The next two results are well known.

Lemma 2d.4. Let M be a connected manifold. For every pair of points x
and y in A! - Bd M, there is a homeomorphism h: M -+ M such that h(x) = y,
hIBjM - idBdM, and h 2 idMrelRdM. 13

Proposition 2d.5. Every connected manifold has a simply connected cover.
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Proof. In view of Theorem 2b.6, it suffices to show that every manifold is locally
path-connected and semilocally simply connected. Let X be an m-manifold, and
let U be a neighborhood of an arbitrary point x E X. We find a simply con-
nected neighborhood of x within U, which will show that X has a basis of simply
connected sets. Consequently X locally simply connected, and hence both locally
path-connected and semilocally simply connected.

Let h be a homeomorphism of a neighborhood V of x with an open subset
of H'. Then h(U n V) is open in H m , so choose within this set an open ball B
around h(z). Since B is convex, it is simply connected, and h- (B) is homeomorphic
to B. Therefore h-(B) is also simply connected, because path-connectivity and
fundamental groups are topological invariants. Furthermore, h- (B) is open in U n
V, and hence in X. Therefore h- 1 (B) is a simply connected neighborhood of x,
contained within U. 1

The next two lemmas are my own inventions, and although they rely on more
advanced topics in algebraic topology, their proofs follow directly from standard
results.

Lemma 2d.6. Let M be simply connected, and let U be a path-connected
neighborhood of a closed subset X C_ M. Then each path component of M - X
contains exactly one path component of U - X.
Proof. (For those who know singular homology theory.) If X = U, then X is both
open and closed in M, whence either X = M or X = 0 by the connectivity of M.
In either case the lemma is trivial. Hence we assume X C U, and choose a point u
of U - X. The couple {M - X, U} is excisive because M - X and U are open sets
that cover M. Hence there is a relative Mayer-Vietoris sequence

.. H,(M,u) -. Ho(U - X,u) -. Ho(M - X,u) E Ho(U,u) -. Ho(M, u).

Because U and M are path-connected, the groups H0 (M, u) and H0 (U, u) are trivial.
Furthermore, H, (M, u) ;z, H, (M) is trivial because M is simply connected. Hence
the sequence above takes the form

0 --+ Ho(U - X,u) -- Ho(M - X,u) -. 0.

Thus the map i., which is induced by the inclusion i: (U - X, u) --+ (M - X, u),
is an isomorphism. The groups Ho(U - X, u) and Ho(M - X, u) are free abelian,
generated by the path conponents of U - X and M - X, respectively, that do
not contain u. For each path component C of U - X with u 0 C, there is a path
component D of M - X that contains C, and i. maps the generator of Ho(U - X, u)
corresponding to C into the generator of Ho(M-X, u) corresponding to D. For . to
be an isomorphism means that D does not contain u, and no two path com-onents
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of U - X are carried by i into the same path component of M - X. Hence every

path component of U - X, including the one that contains u, lies in a unique path
component of M - X. 0

Lemma 2d.7. Let M be a simply connected, noncompact 2-manifold, and let
U be a neighborhood of x E M - Bd M that is homeomorphic to an open ball in R'.
Then every essential loop in U - x is essential in M - x.

Proof. (Uses singular homology and a little homotopy theory.) The set M - x is

open because manifolds are Hausdorff, so {M - x, U} is an excisive couple in M.

Hence there is a Mayer-Vietoris sequence

•... - H2(M) - HI(U - x) --+ HI(M -x) ED HI(U).--* H(M)--..

Because M is simply connected, HI(M) is trivial, and H1 (U) is zero because U is
homeomorphic to a contractible space. We can also infer that H 2(M) = 0 from the
theorem [53] that every connected, noncompact n-manifold satisfies H,(M) = 0.
(This theorem is usually stated for manifolds without boundary, but it can be
extended to manifolds with boundary as follows. Let M be a connected, noncompact
n-manifold with boundary, and let N be the space obtained from the disjoint union
M E (Bd M x [0, 1)) by identifying p with (p,0) for all p E Bd M. Then N is a
connected n-manifold without boundary, and N cannot be compact because M is
a closed subspace of N that fails to be compact. Hence H,(N) = 0, and H,(M) ;,
H,(N) because M is a deformation retract of N.) Hence if i: (U - x) -+ (M - x)
denotes the inclusion, then the Mayer-Vietoris sequence takes the form

0 ---+ HI(U - x) ie HI(M - x) ---+ 0.

We conclude that i. is an isomorphism.
From this we can show that the inclusion i induces a monomorphism of funda-

mental groups. For any base point y in a space Y, the function that sends a loop
a: I -+ Y at y to the singular 1-cycle a (identifying I with the standard 1-simplex)
induces an epimorphism 0: 7r'1(Y, y) --- HI(Y).

The kernel of this homomorphism is the commutator subgroup of 7r,(Y, y), which
vanishes if 7r1 (Y, y) is abelian. Let y be any point of U - x. The diagram

7(- x'y) __O H1 (U -x)

S,(M- x,y) ---- H,(M - x)
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commutes, as one may easily verify. Furthermore, U - x is homeomorphic to an
open ball of R 2 with one point removed. It follows that U - x has the homotopy
type of a circle, whence ir1(U - x, y) - Z is abelian. Therefore the top map in the
diagram is an isomorphism. Hence i a = o i, is an isomorphism, which makes
i, a monomorphism.

To complete the proof, suppose that a is an essential loop in U - x, and let y
be a(O). Then [a]p $ 0 in irj(U - x,y), and hence i,([a]p) 6 0 in 7r(M - x,y).
But i,([a]p) = [i o alp, so i o a is essential in M - x. D
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Chapter 3

The Topology of Blankets

The main tool in my analysis of single-layer wire routing is the lifting of cuts and

wires to a simply connected covering space of the routing region. For this purpose

the sketch model is not adequate because cuts and traces in a sketch have their

endpoints outside the routing region, and hence cannot be lifted. To avoid this

difficulty I retreat to a cleaner model, called the design model in which all entities of

interest lie wholly within the routing region. The routing region in the design model

is a 2-manifold with boundary called a sheet, and its simply connected covering space
is called a blanket. The cuts and wires in the design model are paths called links

that begin and end on the boundary of the sheet. Since the boundary is part of the
sheet, they can always be lifted to the blanket.

The present chapter studies the topological properties of the elements of the

design model. (I describe the design model itself at the beginning of Chapter 4,
and do not take up the sketch model again until Chapter 8.) Its principal goal is to
recapturing some of the simplicity of routing in channels. For example, every cut

in a channel divides the channel into two pieces, and one can determine whether a

wire is forced to cross the cut by checking whether its endpoints fall on opposite

sides of the cut. A cut in a sheet does not separate the sheet, but we- prove that

every lifting of that cut to the blanket separates the blanket. This fact leads to a

good definition of a necessary crossing of a cut by a wire and of the flow across a

cut; see Definition 4b.2.
Looking further at separation properties, we consider how collections of cut

liftings separate the blanket. There are two important results in this direction. One

says that if a collection of cut liftings in a blanket forms a loop, then that loop has
an inside and an outside, and no part of the blanket's boundary lies inside the loop.

Consequently, a wire lifting, which must begin and end on the boundary, cannot
cross into the loop without also crossing out of it. We use this fact in Chapter 4

to relate the flows across cuts. A second result says that if two cuts are homotopic

as links (a concept we will define shortly), then one can choose homotopic liftings

of those cuts, and they separate the components of the blanket's boundary in the

same way. This fact leads to Proposition 4b.3, which states that homotopic cuts
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have equal flow.
The chapter concludes with a look at the analogues of rubber bands in the

design model. First we show that every path in Rn can be reparameterized to
make it canonical without affecting its image, path class, or arc length. Then we
prove that every path class of paths in a sheet contains a unique minimum-length
canonical path. Such minimum-length paths, called elastic chains, will be used for
several purposes later on.

Sheets and blankets

Let us begin by defining the elements of the design model. The routing region
is a subspace of the plane called a sheet: a compact, connected 2-manifold whose
boundary consists of two or more disjoint polygons. To make a sheet, start with a
polygon P0, and remove from Po U inside(Po) the insides of finitely many disjoint
polygons P1 , ... , P,, that lie inside P0. If n > 1, the resulting space is a sheet
whose boundary has connected components Po, P1 , ... , P. These subspaces are
the fringes of the sheet. The insides of the polygons P1, ... , Pn and the outside
of P0 form the routing obstacles. Because sheets are connected manifolds, Propo-
sition 2d.5 shows that every sheet has a simply connected cover, which we call a
blanket. And since sheets are connected and locally path-connected, Theorem 2b.7
shows that all blankets of a sheet are equivalent. Hence we can speak of "the" blan-
ket of a sheet. By Proposition 2d.3, every blanket is a 2-manifold with boundary.

The simplest sort of blanket is depicted in Figure 2b-1, if one takes the borders
of the annulus to be polygons. In this example the sheet has only two fringes. The
blanket for a sheet with 3 or. more fringes is harder to visualize and to draw, though
I have made an attempt in Figure 2b-2. If one is concerned with the covering map,
then one should envision the blanket as infinitely many layers lying above the sheet,
connected so as to satisfy the following condition: a path in the blanket is a loop
if and only if its projection to the sheet is an inessential loop. If one is concerned
only with the intrinsic properties of the blanket, however, then the representation
of Figure 3-1 is helpful; it embeds the blanket in a bounded region of the plane.

Our primary objects of interest are paths of various kinds. We study paths
in a sheet by lifting them to the sheet's blanket. (By Theorem 2b.3, the Lifting
Theorem, paths can always be lifted.) "Lifting" will always mean lifting from the
sheet to its blanket. For instance, if D is a set of paths in a sheet, then a ,-lifting
is any path in the sheet's blanket whose projection to the sheet is a member of 4,.

Flat manifolds

Sheets, blankets, and all their submanifolds have a very special property: they
are flat. A flat m-manifold M is one that comes equipped with a local embedding
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I

Figure 3-1. One way to visualize a blanket. This figure forms the basis for many
subsequent pictures of blankets. (Later figures show only part of the blanket and
parts of a few fringes.) All blankets are homeomorphic either to R x I (as in
Figure 2b-1) or to the shaded subspace of the plane. Specifically, every sheet with
3 or more fringes has this space as a blanket, though the covering map varies. Part
of this surface is shown in Figure 2b-2.
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h: Al --+ R' . Any sheet S is flat, because it comes with an inclusion i: S -. R2.

(Inclusions are always embeddings, and hence local embeddings as well.) Every

blanket is flat, for if M is a blanket with covering map p: M -- S, then p is a local

homeomorphism, and hence i o p: M --+ R 2 is a local embedding. A submanifold
N of a flat manifold M is naturally a flat manifold, for if h: M -# Rm is a local

embedding, so is hlN. Of particular importance to us are the scraps of a blanket:

its simply connected, open submanifolds. All scraps are flat manifolds.
Flat manifolds inherit many nice properties of Euclidean space, such as a notion

of linearity for paths. Let M be flat, with local embedding h: M --+ R' . A path a

in M is linear if h o a is linear, straight if h o a is linear and nonconstant, and bent
if there is a point t E I such that ao:t and al:t are straight and intersect at a(t)

alone. More generally, a is piecewise linear, abbreviated PL, if h o a is piecewise

linear, and piecewise straight if h o a is piecewise linear and none of its segments

is constant. A simple path is piecewise linear and injective; a simple loop is the

same except that its endpoints coincide. Straight and bent paths are always simple.

If x is a point in I, we say a is linear at z, straight at a or bent at a if there is

an interval [s, t] containing a neighborhood of z such that ac:t is linear, straight,
or bent, respectively. All of these properties except simplicity are preserved by
lifting from a sheet to its blanket and by projecting from a blanket to its sheet. For
example, if a is a lift of a path #, then a is straight at x if and only if 0 is straight
at x. If 0 is simple then so is a, but the converse is false.

Another notion that flat manifolds inherit is that of arc length. Given a norm I
on R"', one can define the arc length of a path a in M as Ih o al. If M is path-

connected, one thereby obtains a metric for M: define the distance between two

points in M to be the infimum of the arc lengths of all paths between those points.

You may check that this distance function is a topological metric on M.

Links and link homotopy

The paths in a manifold fall into different categories depending on where they
touch the boundary of the manifold. A path a in a manifold M is a link if
a-'(Bd M) = {0, 1}, a half-link if a-'(Bd Al) = {0}, and a mid-link if a-'(Bd M)

is empty. Links, half-links, the reverses of half-links, and mid-links are collectively
called sublinks. A chain for a path a, so called because it may contain one or more

links, is any path in [a]p. For any manifold M, we call the components of Bd M the

fringes of M. The fringes that contain the endpoints of a sublink are the terminals
i of the sublink. A link has either one or two terminals, a half-link has one, and a

mid-link has none.
The notion of homotopy for links is very important because it applies to all cuts

and wires. Two links a and $ in a manifold M are link-homotopic, written a --L f,
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if there is a homotopy H: I x I -- M between a and # such that H({0, 1) x I) g
Bd M. In other words, as a is deformed into 0, its endpoints must stay on their
respective fringes. Thus link-homotopic links have the same terminals. The map H
is called a link homotopy. One may check that the relation of being link-homotopic
(also called link homotopy) is an equivalence relation; the set of links that are
link-homotopic to a is denoted [all. Two links that are path-homotopic are also
link-homotopic, so the path-homotopy class [alp is always a subset of [alL.

Liftings of links

Because the majority of the lemmas and propositions in the next four chap-
ters involve lifting paths from a sheet to its blanket, some further remarks about
lifting are in order. Suppose the blanket M covers the sheet S via the map p.
By Lemma 2d.3, the boundary of the blanket lies over the boundary of the sheet.
Hence a lifting of a link is a link, a lifting of a half-link is a half-link, and a lifting
of a mid-link is a mid-link. An elementary but important fact is that the liftings
of a simple path are disjoint. For let a and / lift the simple path Y, and suppose
a(s) = fl(t). Then "y(s) = -y(t), whence s = t. Hence by uniqueness of liftings
(Theorem 2b.2) we have a = fl.

Another useful fact is that all the lifts of a path in S have the same topological
properties: if a and 0 lift the same path, then there is a covering transformation
T: M --+ M such that T o a = /. For by Proposition 2b.7, the covering spaces
(M, a(O)) and (M, /3(0)) are equivalent; there is a covering transformation T: M-
M that carries a(0) to /3(0). So To a lifts the same path as a, and it agrees with/3
at 0; hence T o a = # by uniqueness of liftings. Moreover, T is a homeomorphism,
and therefore a and 8 are topologically indistinguishable.

3A. Constructing Paths in Blankets

One drawback of working with blankets is that their geometry and topology are
unfamiliar. Whereas in the plane one can take for granted many theorems of Eu-
clidean geometry and geometric topology, the analogous facts about blankets are far
less intuitive. Hence the need for the present chapter, which collects basic results
about blankets.

We begin with several methods for constructing paths and links in blankets.
4 First we show there exists a simple link, half-link, or mid-link between every two

distinct points in a blanket. Then we characterize link homotopy in terms of path
homotopy, and we prove that two links in a blanket are link-homotopic if and only if
they begin and end on the same fringes. Most importantly, we relate link homotopy
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in a sheet to link homotopy in its blanket. Homotopic links in a blanket, when
projected to the sheet, remain homotopic; homotopic links in a sheet can always be
lifted so that their liftings are homotopic.

Existence of simple paths

Because blankets are connected manifolds, they are path-connected. That is,
for every two points in a blanket, there is a path that connects them. Since I work
only with piecewise linear paths, I need to know that the path can always be made
piecewise linear. We can prove something stronger: the path can always be made
simple, and its middle need never intersect a fringe. Two lemmas are helpful in
proving this claim. The first says that one can remove all self-intersections from a
piecewise linear path.

Lemma 3a.1. For any PL path a in a flat manifold, there is a simple path 3
in Im a with the same endpoints as a, and I1111 < Ia ll in any norm 11. I1. D
The proof of this lemma is an induction on the number of pairs of segments of a
that intersect. I omit the details.

The second lemma states that one cannot disconnect a manifold by removing
all or part of its boundary.

Lemma 3a.2. If M is a connected manifold and X C Bd M, then M - X is
connected.

Proof. Let N denote M - X, and suppose that N is not connected. Then there
are nonempty open sets U and V that. partition N. Let C? U and C7 V denote the
closures of U and V in M. Because M is connected, C7 U and CT V must intersect,
or else their complements,. which are nonempty open sets, would partition M. Let
x be a point of (C7 U) n (C7 V); it cannot lie in N, and hence must lie in X. Take a
boundary patch h: W --* H" around x whose image is an open ball. Then h(WflN)
is the connected set h(W) - Bd H" with perhaps some points of closure added, so
h(W n N) is also connected. Hence W n N is connected since h is a homeomorphism.
But W n N is the union of its disjoint open subsets W n U and W n V, neither of
which is empty, because x is a point of closure of both U and V. Thus W n N is
not connected, a contradiction. D

Armed with Lemmas 3a.l and 3a.2, we show that for any two points in a blanket,
there is a simple link, half-link, or mid-link connecting them.

Proposition Ja.3. Every pair of points in a scrap M can be connected by a
simple path whose middle lies in M - Bd M.

Proof. Set N equal to M - Bd M. We first prove the proposition in the case where
both points lie in N. Being an open subset of a flat manifold, N itself is a flat
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manifold. The preceding lemma shows that N is connected. Let p: M --+ R" be
the local embedding associated with M. Say that an open set V C N is nice if h
maps V homeomorphically onto a convex subset of IR. Every point of N has a
nice neighborhood. Define an equivalence relation - on the points of N by setting
x , y if there is a finite sequence of nice sets V, ... , 1, such that:

(1) x E V and y E V,; and

(2) V meets V+ whenever 1 < i < n.

The equivalence classes of '-i are open, and form a partition of N; since N is con-
nected, there can be only one equivalence class.

So for any two points x, y E N, there is a finite sequence of nice sets /1, ... , V"
satisfying (1) and (2) above. We use this sequence to construct a simple path in
M from x to y. Choose points x = x, xi, ... , x,, = y such that xi EVinV i+i
for all i satisfying 1 < i < n. Because each set p(V) is convex, the linear path A,
from p(x- 1 ) to p(xi) lies in p(V) for each i. Let a, be (pjv) - 1 o A,, wad let a be

4 , the concatenated path a, *. * a,,. Then a is piecewise linear, and runs from x to
y. Lemma 3a.1 reduces a to a simple path from x to y.

To complete the proof, suppose that one of the points to be connected, say x,
lies on Bd M. There is a patch h o p, defined on a neighborhood U of x, such that
p(U) is polygonal. Take any straight path from p(x) whose middle lies in Int p(U),
and lift it to a path a in U starting at x. Then a is a straight half-link in M. The
previous lemma proves the existence of a simple path - in N from a(1) to y, and
the concatenated path a*-y is a PL half-link in M from x to y. Lemma 3a.1 reduces
this path to a simple half-link from x to y. The same technique handles the case in
which both x and y lie on Bd M. E3

Link homotopy

One can characterize link homotopy in terms of path homotopy, as the next
lemma shows.

MLemma 3a.4. Two links a and # in a manifold M are link-homotopic if and
Wonly if there exist paths ir and v in Bd M such that a * r. * * is an inessential

loop in M.
Proof. This is a consequence of Lemma 2a.9. For there to be a link homotopy
between a and 6 means that there is a map f: Fr(I x I) --. M with an extension
Fover Ix Isuch that f(.,O) = a, f(,1) = 3, and thepaths v = f(,-) and
v = f(1, ) run in Bd M. By Lemma 2a.9, the existence of the extension F is
equivalent to f o 6 being inessential, where 6 is the loop

,0).(1, ) * (, 1 1XI.
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Section 3A Constructing Paths in Blankets

But f o 6 is just a * ic V*, so the proof is complete. 0

In a simply connected manifold the condition that the loop be inessential is
redundant. Since fringes are path-connected, we obtain the following important
corollary.

Corollary 3a.5. Two links in a blanket are link-homotopic if and only if they
have the same terminals. 03

Here we use the convention that a and 3 have the same terminals if a(O) lies on
the same fringe as 3(0), and a(1) lies on the same fringe as 3(1).

If link-homotopic links in a blanket are projected to the sheet, they remain link-
homotopic. For if F is a link homotopy between a and 3, and if p: M -+ S is the
covering map, then p o F is a link homotopy between p o a and p o 3. The next
lemma is a partial converse: given link-homotopic links in a sheet, we can lift them
to obtain link-homotopic links in the blanket.

Proposition 3a.6. Let a and f3 be link-homotopic links in a sheet S, and let
M be a blanket of S. There is a bijective correspondence between the lifts of a

to M and the lifts of 3 to M, and corresponding lifts are link-homotopic.

Proof. Let p: M -+ S be the covering map. Choose a link homotopy F: I x I --+ S
between a and 3, and let & be any lift of a. We say that & corresponds to a lift 3
of 13 if there is a link homotopy between F and 3 that lifts F.

By syrmetry, it suffices to show that to each lift & of a there corresponds a
unique lift 3 of 3. Let a be given. Because I x I is a convex subset of R 2, it is
locally path-connected and -simply connected, and hence by the Lifting Theorem
(2b.3), F has a lift F: I x I --+ M such that F(O, 0) = 6(0). Theorem 2b.2 shows
this lift to be unique, so there is only one choice for 1, namely 0 = F(., 1). We see
that 1 is a lift of 3, because

po1 = po F(., 1) = F( ., 1) = 3.

I claim that F is a link homotopy between a and 3. Two things must be shown:
that F( ,O) = &, and that F({0, 1} x I) is contained in Bd M. The second is easy.
Because F is a link homotopy, we have

Spo F({O, 1} x I) = F({O, 1} x I) _ BdS.

Now p-(BdS) = BdM by Lemma 2d.3, and hence F({0,1} x) 9 BdM. To

show that F( ., 0) and a coincide, note that they are lifts of a that agree at one
point (namely 0), and apply uniqueness of liftings (Theorem 2b.2). 13
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Lifting of convergent sequences

The last result in this section concerns the lifting of another relation among

paths: uniform convergence. Given a uniformly convergent sequence of paths in the
sheet, we can lift them to the blanket so that the limit of the lifts is a lift of the

limit.

Lemma 3a.7. Let M be a blanket of a sheet S. Let (an) be a sequence of

paths in S that converges uniformly to a path a, and let 03 be a lift of a to M.

There is a sequence of paths (/3,) that converges uniformly to /3, and/3,, lifts an for

each n.

Proof. Let p: M -- S be the covering map. Choose c smaller than the minimum

distance between fringes of S, and small enough that whenever two points on a

fringe V of S are separated by a distance c or less, they lie on adjacent segments

of the polygon V. Let P C S x S be the set {(p,q) : P-qI < e}, and define a

function L: P x I --* S as follows. The path L(p, q, ) is the linear path from p

to q if this path lies in S. Otherwise, let V be the unique fringe of S that p C q

intersects. Because V is a convex polygon, p t> q crosses exactly two segments of V.

These segments are adjacent. Let v be their common vertex, and define L(p, q, -)

to be the path (p t> v) * (v t q), parameterized according to arc length. Then L is a

continuous function on P x I. In addition, there is a constant K such that the arc

length of L(p, q, • ) is at most K lp- q.
We construct the sequence (/3,,) as follows. Let f,, be supte, Ian(t) - a(t)I; we

have en - 0 as n -- oo. When E, > e, let /3,, be an arbitrary lift of a,,. Otherwise,
let Fn be the homotopy between an and a given by

Fn(s,t) = L(an(s),a(s),t).

Because L is continuous, so is Fn. Let Gn be a lift of Fn satisfying Gn(. , 1) =/3,

and set /3n, G,&(., 0). Then /3 lifts an,, and the distance between /3, and /3 is

sup inf{ Ip o • u:/3 ,(t) -+)3(t)} -< sup lp o G,,(t, )I
tEl t~l

= sup IL(an(t),a(t), )1
tEl

byK,.Teeoetepts(3, ovreuiomyt 3Since the distance between an,(t) and a(t) is at Most fn,, this quantity is bounded
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Section 3B Separation Results

3B. Separation Results

In this section we consider more of the global topological properties of blankets.
The main result, which is fundamental to my entire approach to wire routing, is
that every simple link in a blanket splits it into two scraps. We build on this result
to show that any simple loop of k links splits a blanket into k + 1 scraps, one of
which contains no fringes. If these properties seem obvious in view of Figure 3-1,
you may consider this section as providing formal evidence that Figure 3-1 is an
accurate representation of a blanket.

The topology of fringes

Every fringe of a sheet is a polygon, and hence homeomorphic to the circle S 1. It
should come as no surprise, therefore, that every fringe of a blanket is homeomorphic
to the real line R 1. To prove this fact we first need one lemma.

Lemma 3b.1. Every fringe of a sheet is a retract of the sheet.

Proof. Let F be a fringe of the sheet S. Suppose first that S lies outside F,
by which I mean S C F U outside(F). By Lemma 2c.3 there is a retraction of
F U outside(F) onto F, which when restricted to S gives a retraction of S onto F.

The other possibility is that S lies inside F. Because S has two or more fringes,
there is a point x in inside(F) - S. Let the map h be inversion with respect to
the unit circle centered at x. Since h is its own inverse, it is a homeomorphism
of R2 - x with itself. Now h(S) is a sheet that lies outside the fringe h(F). Hence
there is a retraction r from h(S) onto h(F), and the map h o r o h is a retraction
of S onto F. 0

Let F be a fringe of a sheet S. As shown in Section 2A, the fact that F is
a retract of S implies that the inclusion i: F --+ S induces a monomorphism of
fundamental groups: every essential path in F is essential in S. We use this fact in
the following lemma and elsewhere.

Lemma 3b.2. Every fringe of a blanket is homeomorphic to R.

Proof. Let A be a fringe of the blanket M. and let p: M - S be the covering map.
By Lemma 2d.3, the fringe A covers a fringe F of S via the map PIA. We show that
A is simply connected, and thence 1'roposition 2b.7 shows that .4 is homeomorphic
to any other simply connected covering space of F. Since F is honi-omorphic to
the circle S', the real line R' is one such covering space.

Because Bd Al is a manifold, its component A is a connected manifold and
hence path-connected. It remains to show that every loop o in .4 is inessential in 4
Certainly o is inessential in M, because M is simply connected ftence p ck is
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The Topology of Blankets Chapter 3

inessential in S. Because F is a retract of S, by Lemma 3b.1, the loop p o a is
inessential in F. But pIA: A --+ F is a covering map, so any lift of p o a to A is
inessential in A. In particular, a is inessential in A. E3

Neighborhoods of sublinks

To determine how a set X separates a blanket, we apply Proposition 2d.6 to a
neighborhood U of X whose properties we know. Here X is the image of a simple
path in a flat 2-manifold. The neighborhoods we use are called tubular because they
look like thin tubes about the simple path in question. A tubular neighborhood of X
has no holes: it separates the manifold essentially as X does.

Definition 3b.3. Let a be a simple sublink in a flat 2-manifold M. A neighbor-
hood N of Im a is tubular if there is a piecewise linear homeomorphism h: I x I -

Cl N whose inverse k has the properties shown in table 3b-1.

a-'(Bd M) k(Fr N) k(Bd M) k o a

_____ Uei I, ___ P2 e e

{O} or {1) C1 U e3 U e4  C2 PO P2 PC I 2

0O, 11 1 e, Ue e2 Ue 3 , PI CP3e4

Tiible 3b-i. Requirements for a tubular neighborhood. For N to be a tubular
neighborhood of fIna, the homeomnorphism. k must carry the path a and the
sets Fr N and Cl N fn Bd M onto certain parts of I x I, which differ depending
on whether a is a miud-link, half-link, or link. The points po, .-. , P3 are given by

1, 1), while the line segments el, .,e 4 are el x 1x,e2 = OX1, e3 = lX I,
and f 4 IXO0-

Of course, we need to know that every simple sublink has tubular neighborhoods.

Y~o prove this rigorously would be very tedious. The following lemmna shows only
how to construct the neighborhoods; Figure 3b-2 suggests how one might prove that
thieN are, in fact, tubular.

Lemnma 3b.4. Let a he a simple sublmnk in scrap. Every neighborhood of Im a
(Pntains a tubular neighborhood of Im- a.

AProof. Let Al be a o-ap of the l1anke, B, and let p: B S be the covering map.

Wrt as the con~ atenation of finitely many paths a, such that p o a, is a line
,e~nielit for each i. By subd-vidig these line segments if necessary, we may assume
hAt for each i. the image of o, si t' inside a neighborhood V; such that p~, is an

flimiedding Choose a positive nunbet It smnaller than the following quantities:
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Section 3B Separation Results

(1) The minimum distance between a path ai and the complement B - Vi of the
corresponding neighborhood.

(2) The minimum distance between paths ai and a, over all i and j with

i- jj > I.
(3) The minimum distance between the compact set Im a and the fringe edges

of B that do not intersect Im a.

(4) The distance from Im a to the closed set B - M, if the latter is nonempty.

Let N be the set of points whose distance from Im a is less than e/2. Then N has
the desired properties; see Figure 3b-2. E3

IX k

Figure 3b-2. Construction of a tubular neighborhood. If a is a simple sublink
in a scrap, then for sufficiently small e the set of points N whose distance from
Im a in the norm 11" .1 is less than e is a tubular neighborhood of Im a. One can
set up a homeomorphism between CIN and I x I (the map k with inverse h, as
in Definition 3b.3) that takes triangles and quadrilaterals in Cl N to triangles and
quadrilaterals in I x I, and has the properties listed in Table 3b-1.

Threads and half-threads

Figure 3-1 suggests that a simple link in a blanket should split it into two
parts, and this claim we now prove. To be proper, one should not speak of a
path separating a space, but rather of the image of the path doing so. Some new
terminology is therefore helpful: a thread is the image of a simple link, and a half-
thread is the image of a simple half-link. We could also consider "mid-threads",
but they turn out not to be very useful. To summarize: threads separate scraps,
but half-threads (and mid-threads) do not.

Lemma 3b.5. Removing a half-thread from a scrap leaves a scrap.

%Proof. Let a be a simple half-link in a scrap M, let A denote its image, and let U
be a tubular neighborhood of A with homeomorphism h: I x I -+ C7 U. Because A
is a compact subset of the Hausdorff space M, it is closed, and hence M - A is open
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The Topology of Blankets Chapter 3

in M. Therefore M - A is an open subspace of a blanket. To show that M - A
is simply connected, it suffices in view of Lemma 2a.7 to find a simply connected
deformation retract of M - A. In the notation of Table 3b-1, one can construct
a deformation retraction F of I x I - p onto el U e3 U e4 . Then h o F o h-'
is a deformation retraction of C1 U onto Fr U. Because it fixes Fr U, this map
extends to a deformation retraction of M - A onto M - U. In a similar way one can
construct a deformation retraction of M onto M - U. Since M is simply connected,
Lemma 2a.7 shows that M - U is simply connected. D

Proposition 3b.6. Removing a thread from a scrap leaves two scraps whose
common frontier is the thread.

Proof. The construction is illustrated in Figure 3b-3 below. Let a be a simple link
in a scrap M, let C denote its image, and let U be a tubular neighborhood of C
with homeomorphism h: I x I -- C1 U. From Table 3b-1 we see that h carries I x1
and I x (0, 1) onto C and U, respectively. Hence U - C has two path components,
call them A' and B', and their closures in U include C. Lemma 2d.6 now implies
that M - C has exactly two path components, each containing a path component
of U-C. Call themAand B, andsay AD A'and BD B'. The set M-Cis
open in M, because C is a compact subset of the Hausdorff space M, and therefore
closed in M. Hence M - C is locally path-connected (because M is), and so its
path components A and B are open. Therefore A and B are the components of
M-C; wehave CZAC M-B and C/BC M-A. But wealsoknow

CA D CZA'D C and C7B D C7"B'D C.

Together these facts imply C/A = A U C and C B = B U C, whence Fr A = C =

Fr B because A and B are open.

.....................

h

k

... . . . . . . . .......... .. . . . . . . . ... : :::::.

Figure 3b-3. How a thread separates a scrap. The tubular neighborhood U of
the thread Im a shows us how Im a is embedded in the blanket. Every topological
relationship among the path po p3 and the components of its complement in Ix I
also obtains for a and the components of its complement in Cl U.
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Section 3B Separation Results

By the symmetry between A and B, it suffices to prove that A is a scrap. We
know that A is open, so we need only show that A is simply connected. The set
I x I - p has a deformation retraction onto e1 U e4. Pulling back via h, one
obtains a deformation retraction of (Cl U) - C onto Fr U. Since this map fixes
Fr U, it extends to a deformation retraction of M - C onto M - U. Restricting
to A, we obtain a deformation retraction of A onto A - U. For similar reasons, there
is a deformation retraction of A U C onto A - U. Hence by Lemma 2a.7, if we show
that AUC is simply connected, it will follow that A- U and A are simply connected.
We exhibit A U C as a retract of the simply connected space M. The map a is an
embedding of I as a closed subspace C of B U C, and the latter space is normal.
(The blanket containing B U C is metrizable, hence B U C is metrizable, and thus
normal.) Since I is an a absolute retract, there must be a retraction r: B U C --+ C.
This map r may be extended over M by making it the identity on A. Then r is a
retraction of M onto A U C. Because M is simply connected, so is the retract A U C
of M. 0

Weaving threads into webs

Building on Proposition 3b.6, one can determine how groups of threads partition
a blanket. Simple loops are especially important to analyze. Let A be a simple
loop in a blanket M, and suppose that Im A fl Bd M has k > 0 components, each
containing more than one point. Then A is called a loop of k links. In addition,
the set Cl(Im A - Bd M) is the union of k disjoint threads, and is called a web of k
threads. A straightforward induction shows that a web of k threads splits a blanket
into k + 1 parts.

Lemma 3b. 7. Removing a web of k threads from a blanket leaves exactly k + 1
scraps. One has the entire web as frontier, while the others border on one thread
each.

Proof. Let A be a loop of k links, and let Im f1,..., Im /k be the threads contained
in Im A. We apply Proposition 3b.6 to each of the threads Im fli. First consider
Im 01: it separates the blanket into two scraps, only one of which contains the
remaining links 02, ... , /3k, because the loop A is simple. The thread Im 82 separates
this scrap into two scraps, one of which contains /3, ... , /3k. Continue in this
way, obtaining k + 1 scraps. At each stage, exactly one of the scraps contains the
remaining threads, and borders on all the threads removed; each of the other scraps
borders on one thread Im /8. 0

In Lemma 3b.7 the special scrap is called the inside of the loop, or of the
web. Figure 3-1 suggests strongly that the inside of a web is compact and that it
contains only parts of fringes. The following rather technical result bears out these
conjectures.
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Proposition 3b.8. No fringe lies inside a web of threads.

Proof. We begin by showing that the closure of the inside of a web is simply
connected. Let T1 , ... , Tk be the threads that make up a web W of k threads in
a blanket M. Let B denote the inside of W, and for 1 < i < k, let Ai be the
component of M - W that borders only the thread T. For each i, the absolute
retract I is embedded in the normal space Ai U T as the closed set Ti, so there is a
retraction ri of A, UT onto Ti. Define a retraction r: M --+ BUW by r(x) = ri(x) if
x E AiU T,, and r(x) = x if x E BUW. These definitions agree on their intersection,
which is W, so r is indeed continuous. Its image is the space C = Cl B = B U W.
Thus C is a retract of M, and because M is simply connected, so is C.

In the remainder of the proof we prove that C1 B is compact, whence it follows
that B includes no fringe of M. For if X is a fringe of M, then by Lemma 3b.2,
it is homeomorphic to R'. Hence X contains an infinite discrete subspace Z, and
since X is closed in M, this subset is discrete in M. The points of Z cannot all lie
in a compact subspace C of M, and so neither does X.

Because C is simply connected and contains Im A, there is a path homotopy
F: I x I -+ C between the loop A and the constant loop at A(O). Suppose that
x E C -Im F. Certainly x f Bd C, because Bd C C Im A C Im F. Let y be an
arbitrary point of B - Bd B. Because C7 B is a connected manifold, there is by
Lemma 2d.4 a homeomorphism h: C --+ C that fixes Bd C and carries x onto y.
Then h o F is a path homotopy between A and a constant loop, and y Im(h o F).
Hence we may choose any point X E C - Bd C and assume x I, F.

Figure 3b-4. The inside of a loop of links.
The path A is a loop of 4 links in the blanket

B0 M. It is essential in the space M-z, because
\ t-p p * v, and v is essential in M - x but

j4 is not. In fact, . is essential in M - x for
(any point z inside A.

X(O)

We choose a point x E C - Bd C very near W. Let U be a neighborhood of
A(O) that intersects only two line segments of W. We may assume that A(O) lies
in Bd M. If p: M --+ R' denotes the local embedding attached to M, we may also
assume that p embeds U n C as a polygonal region in R2 . Choose x E U n B. As
shown in Figure 3b-4, there is a loop v at A(O) and a loop of links ps at A(O) such
that

* the loop p o v is a simple polygon that encloses p(x), and
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* x lies outside p.
Since the closure of the inside of p is simply connected, y is inessential in that
subspace of C - x, and hence p is inessential in C - x. On the other hand, v is
essential in U n C - x, because p o v is essential in p(U n C) - p(x), and plunc is an
embedding.

Lemma 2d.7 applies to the neighborhood U of M; it says that v is essential in
M - x. But i is not, because x lies outside p. Therefore [A]p = [p * v]p = [v]p -$ 0
in the fundamental group of M - x. But F is a path homotopy in M - x from A
to a constant map. This contradiction shows that our assumption C 6 Im F was
faulty. So C = Im F, which is compact because I x I is compact. 1

3C. Properties of Separations

When a loop splits the plane or a blanket, there is a convenient distinction between
the inside of the loop and its outside. And when a link separates a blanket, we
can distinguish between the left.-hand side of the link and the right-hand side. This
section explores the implications of the distinctions between left and right, and
between inside and outside. One important result is that link-homotopic simple
links partition the fringes of a blanket in the same way. Chapter 4 uses this result
to show that the necessity of a crossing is invariant under link homotopy. Another
result of this section says that simple loops in a blanket behave a lot like polygons
in the plane: the measures of their internal angles, at least, have the same sum as
they would for a polygon of the same number of vertices.

The two sides of a link

Because links are paths and not their images, every link is oriented. Hence when
a simple link cuts a blanket into two scraps, one of these lies to the left of the link,
and one lies to the right. This may seem obvious, but it requires some justification.
Since we know what left and right mean in a sheet, we use the covering map to give
an orientation to the blanket.

Definition 3c.1. Let a be a simple link in the blanket M, and let p: M --4 S
be the covering map. Let r be a linear path that intersects Im a at the point

- r(l) = a(x) alone. We say r contacts a from the left or from the right according
to whether the path p o r contacts p o a from the left or the right in S.

What one must prove is that r contacts a from the left if and only if r(O) lies
in a particular scrap of M - Im a. We call this scrap left(a), the left side or left

* scrap of a, and we call the other scrap right(a), the right side or right scrap of a.
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Figure 3c-1. The two sides of a simple link in a blanket. The link a separates
the blanket M into two scraps, denoted left(a) and right(a). The shaded area
represents a tubular neighborhood of a. The straight paths a and r both contact
a from the left, and so a can be moved to coincide with r by a series of dilations,
translations, and rotations. At each stage the origin of the path stays in the same
scrap of M - Im a. This construction shows that the left and right scraps of a

Xare uniquely determined.

To prove that the left and right sides of a are well defined, one shows that if both
a and r contact a from the left (or right), then a can be moved along a until
it coincides with 7. The construction, suggested by Figure 3c-1, uses a tubular
neighborhood of a, and is rather messy. A similar idea underlies the following
important proposition.

Proposition 3c.2. Let a and # be simple links in a blanket, and suppose for
some e E {0, 1} that the points a(e) and fl(e) share a fringe. If /3 lies in left(a),
then a lies in right(#), and we have the relations

left(O) C left(a) and right(a) C right(#).

Proof. Let M denote the blanket. Choose x small enough that ae:z and #,:, are
straight, as shown in Figure 3c-2 below. Let K be a simple path in Bd M from a(e)
to 3(e); it intersects im a U Im # at its endpoints alone. Choose s and t so that
K,:o and xt:l are straight. Because x(1) lies in left(a), so does K(s), and hence the
path c,:O contacts a from the left. Now let p: M --+ S be the covering map, and let
F be the fringe of S containing p o . Let a' denote the path p o ae:x if e = 0, and
p o a.:, if e = 1. Similarly define /3'. By Definition 3c.1, the path p o Kg.:o contacts

a' from the left. Hence p o K. traverses S in a counterclockwise direction if e = 0, or
in a clockwise direction if e = 1. In either case, p 0 Kt:1 contacts /3' from the right.
Therefore rt:l contacts /3 from the right, which means that K(t) lies in right(/3).
Therefore K(O), and in fact all of Im a, falls in right(/3).

- 100 -

pw *P



Section 3C Properties of Separations

KI

~ Wo

a(X) [a__________
Figure c-2. The construction that proves Proposition 3c.2. This figure shows
the situation when e = 0. Because the reverse of the initial segment of . contacts
a from the left, the final segment of r contacts # from the right.

The desired inclusions now follow. Because Im a lies in right(O), it does not
intersect left(/3), and therefore the connected set left(O) lies entirely in one scrap
of M - Im a. And since left(i3) contains points arbitrarily close to 0, and 0 lies
in left(a), the intersection left() n left(a) is nonempty. Thus we obtain left($) C
left(a). And this inclusion implies the other, because

right(#) = M- Im/3- left() ? M- left(a) D right(a). 13

By symmetry, the claim remains true if we exchange left and right throughout.

Separations by homotopic links

A simple link in a blanket partitions the fringes of the blanket into three cat-
egories: those in its left side, those in its right side, and those it intersects (its
terminals). How does this classification change when a link homotopy is applied to
tb link? The answer is that it remains unchanged. This fact follows fairly easily
from Proposition 3b.8 if the links are disjoint, for then their images form a web
of two threads. To deal with the possibility that the links intersect, I introduce
one more method for constructing links. I call it the "detour lemma", because it
constructs a simple link that detours around the right-hand sides of two given links.

Lemma 3c.3. (Detour Lemma) Let a and 3 be link-homotopic simple links in
a blanket M. There is a simple link -y in Im a U Im 0, link-homotopic to a and /,
such that right(y) includes right(a) and right(/O).

Proof. We construct -y by successive approximatioris. Begin with - = a, and let L
and R be the left-hand and right-hand scraps of -f, respectively. Already '- satisfies
all the conditions except right(-y) 2 right(3). Because -f and /3 are piecewise linear,
the path /3 protrudes into L only n times for some finite n. We proceed by induction
on n, preserving all the conditions on -y except right('y) _ right(O). In the basis
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case n = 0, the links a and #3 do not intersect. Since a(O) and fl(0) share a
fringe, Proposition 3c.2 implies either right(a) C right(P) (if Im o C left(a)) or
right(3) C right(a) (if Im 3 C right(a)). Choose -y = P or -/ = a accordingly.

Now suppose that n > 0. Let (s, t) be one of that open intervals that compose
,3- 1(L). Splice the path &.-t into -y to form a simple link -y'. Let L' and R' be
the left-hand and right-hand scraps of y'. Because -y' shares some line segments of
-y, the scraps R' and R intersect. Hence R' D R, since R is connected and does
not intersect Im y'. We also have L' C M - f' - Im -, whence L' C L. The
containment is proper because f..g lies in L but not L'. Replacing -y by -y', we
reduce n by at least 1. Furthermore, the conditions on 7 are maintained: we have
Im -y' C Im a U Im /3; the terminals of "y' are those of a and /; and the right side
f' of -y' includes R, which includes right(a) by assumption. The existence of the
desired path - follows by induction. D

Now we can prove the main result of this section.

Proposition 3c.4. Link-homotopic simple links in a blanket partition the
fringes identically.
Proof. Let M be a blanket, with covering map p: M --+ S, and let a and 6 be
link-homotopic simple links in M. We first show that a and 8 may be assumed
not to intersect, by finding a simple link 6 that is link-homotopic to both a and 3,
but intersects neither of them. Apply Lemma 3c.3 to a and 3, obtaining a simple
link -y. The left-hand scrap of 7 contains no points of Imr a or Im /, else it would
contain points in right(a) or right(3), contradicting Lemma 3c.3. Let b E []L be a
simple link in left(7). Then 6 intersects neither a nor #, and since -f =L a, we have
b -L a as well.

We may therefore assume that the link-homotopic links a and # are disjoint.
By Corollary 3a.5, a and / have the same terminals. Hence the set Im a U Im/3 is
a web of 2 threads, because there is a loop of 2 links formed by a, a path in Bd M
from a(1) to /(1), the reverse of 6, and a path in Bd M from #(0) to a(O). By
Lemma 3b.7, the set M - (Im a U Im /) has three components. One of these is a
component of M - Im a, one is a component of M - Im /3, and the third (the inside
of the web) contains no fringes, by Lemma 3b.8. Therefore a and 3 separate the
fringes into the same three categories. Moreover, the fringes in the left scrap of a

_ ][are also in the left scrap of 3, because of Lemma 3c. 2. 13
The inside of a simple loop

According to Proposition 3b.8, each loop of links has an inside that contains
no fringes. The same goes for simple loops in general, although we cannot say as
much about the remaining components. One can prove this fact by analyzing an
arbitrary simple loop in terms of loops of links.
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Proposition 3c.5. The image of a simple loop separates a blanket into two or
more components, exactly one of which intersects no fringes. D

The distinguished component is, of course, the inside of the loop. Since we are
removing the entire image of the loop, and not just the threads it contains, the
inside component actually avoids all fringes. We cannot claim that the components
are scraps: if the loop touches no fringes, then its outside component is not simply
connected.

Internal angles

Any bent path in a blanket makes an angle, and this angle can be measured by
projecting it to the sheet. There is some ambiguity in this measurement, however:
is the measure of the angle 0 or 27r - 9? If the bent path is part of a simple loop,
then the ambiguity can be resolved by considering the interior of the angle to be
the side facing the inside of the loop. The resulting angle is called internal angle of
the loop at that vertex. If the projection of the loop is a polygon with n vertices,
we know by Euclidean geometry that the measures of the internal angles sum to
(n - 2)7r. The same is true for any simple loop.

Lemma 3c.6. If A is a simple loop in a blanket, and A has n vertices, then the
measures of the internal angles of A sum to (n - 2)r.
Proof. The proof is an induction that works by triangulating the loop. Let LA
denote the sum of the measures of the internal angles of A. The basis case is n = 3,
when the projection of A is a triangle. For the induction step, let A(a) and A(b) be
the vertices adjacent to A(O), where 0 < a < b < 1, and denote by m the measure of
the internal angle formed by these three points. We can create and delete vertices
of A with measure ir at will, for these operations change LA and (n - 2)?r by the
same amount. Hence we can assume m i 7r.

We find a linear path r whose middle lies inside A, and which divides A into two
loops with fewer than n vertices. See Figure 3c-3. If m > 7r, extend the linear path
A, 0 into inside(A) until it reaches a point A(t); let r be the resulting linear path
A(0) b A(t). If m < 7r, let T C I be set of values t for which there is a linear path
from A(ta) to A(1 - t + tb) whose middle lies inside A. If 1 E T, then let r be the
linear path A(a) c- A(b). Otherwise for t = sup T the middle of A(ta) c A(1 - t + tb)
intersects a vertex A(s) of A; let r be the linear path from A(0) to A(s).

In each case r divides A into simple loops p and v with fewer vertices than A.
If necessary, we create a vertex of A at r(1), so that the both endpoints of r are
vertices of A. Then if A has n vertices, p has k + 2 and v has n - k. You can check
that 0 < k < n - 2 in each of the cases (a), (b), and (c). The insides of the loops p
and v cannot intersect outside(A), else they would contain an entire component of
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(a)(b) (C)

>1 80

<11800

Figure 3c-3. Triangulation of a simple loop. Any simple loop in a blanket can
be triangulated using these three operations: (a) extending an edge into the loop
at an internal angle of measure m > 7r; (b) cutting off a triangle where the loop
has an internal angle of measure m < 7r; and (c) if the linear path in part (b) does
not exist or leaves the loop, dividing the internal angle with a linear path to the
"nearest" other vertex.

outside(A) and hence intersect a fringe, in contradiction to Lemma 3c.5. It follows
that every internal angle of p and v is part of an internal angle of A, and thus
LA = Ly + Lv. The induction hypothesis now shows

LA = (k + 2 - 2)r + (n - k- 2)7 = (n. - 2)r,

and the proof is complete. 13

Corollary 3c.7. Every simple loop in a blanket has at least three internal
angles of measure less than ir. 0

3D. Elastic Chains in Sheets

Now we apply some of our results about blankets to paths in sheets. In Chapter 1
we saw the usefulness of rubber bands in sketches. The notion of a rubber band is
even more natural in the sheet model, because the rubber band of a path need not
leave the routing region. Recall that a chain for a path a is any path in [alp. An
elastic path is a canonical path a whose euclidean arc length is minimum among

Fall paths in [alp. The main result of this section is that every path has a unique
elastic chain. It builds on two things: Lemma 3d.1 below, which says that every
path can be made canonical without changing its path class, image, or arc length;
and the results of the preceding section concerning loops in a blanket.

Parameterization of paths

The uniqueness result for elastic chains depends on the condition that an elastic
chain be canonical. Without this restriction, all parameterizations of a minimum-
length path would be elastic. The following lemma justifies our concentration on
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Section 3D Elastic Chains in Sheets

canonical paths; it shows that every path of finite arc length can be reparameterized

to make it canonical.

Lemma 3d.1. (Reparameterization Lemma) Let a be a path in Rn whose

euclidean arc length Jal is finite. Then the map f: s '-4 lao:.I / lal has a right inverse
g: I -+ I, and the function / = a o g is a canonical path with the same arc length
as a. Furthermore,

(1) 6 =p a as paths in Im a;
(2) / is piecewise linear if a is; and
(3) unless a is constant, / is not constant on any open interval of I.

The function g is not necessarily continuous, but a o g is.

Proof. The function f: I -- I defined by f(s) = lao:.I / al is monotonic (non-
decreasing) and continuous; it also satisfies f(0) = 0 and f(1) = 1. Hence f is

surjective, so we can define a function g: I -- I by g(t) = inf f- 1 (t). Then g is
monotonic because f is. Since f- 1 (t) is closed, we have g(t) E f-(t), which implies
f o g = idt. In other words, g is a right inverse of f. Put / = a o g. We prove
a = / o f by showing that for any s E I, the path a maps s and g(f(s)) to the
same point. Put a' = g(f(s)). Then f(a) = (f o g o f)(s') = f(s'), which means
that ao:, and ao:., have the same length. Hence I1ao:.,I1 0, which means that a is
constant on [3', s].

To prove that 8 is continuous, let 6 and t be given; we set e = b/ jal and show
that it' - tj < e implies 1/0(t') - fl(t)I < 6. Put . = g(t) and a' = g(t'). Then we
have

IaoI = t. Ia and Iao.,l = t'. a.

The difference between the left-hand sides of these equations is Iao.oj, which is no
less than the distance from a(s) to a(s'). But these points are just /(t) and 0(t'),
respectively. Thus

<()Ia I =6 .

Therefore # is a path.
Now we show that I/3ot = t. •aj for arbitrary t E I, thus proving that 0 is a

canonical path with 1/1 = lal. We have 0(t) = a(s) where Iao:. = t lal, so it
suffices to show that /o:t and ao:a have the same arc length. By the definition of

arc length, it is enough to show that 00:t and aO.$ have the same polygonal approx-
imations. Let -t be a polygonal approximation to ao:, with vertices a(so), a(s 1 ),
... , we have So = 0 and s,, = s. The vertices of -y can also be written in the

form 3(f(so)), (f(s)), . (f(sn)). Since f is a monotonic function satisfying
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f(0) = 0 and f(s) = t, the path -y is also a polygonal approximation to /. Simi-
larly, if - is a polygonal approximation to /3 with vertices /3(to), /3(tj), ... , 3(t,),
then this sequence can be written a(g(so)), a(g(s1 )), ... , a(g(s.)). Because g is a
monotonic function satisfying g(0) = 0 and g(t) = s, the path -y is also a polygonal
approximation to /3.

Finally, we prove claims (1) through (3). The map f is a path in I from 0 to 1,
and since I is simply connected, there is a path homotopy F: I x I -- I between f
and the identity on I. Because /3 = aof, the map aoF is a path homotopy between
3 and a. Also Im(a o F) = Im a, so claim (1) is proved. For claim (2), suppose
a is piecewise linear with vertices a(so), a(sj), ... , a(s,,). Then the function f is
linear on each interval [s,- 1,si], as is a, and so the map /3 = a o g is also linear on
each interval [f(si,-), f(s,)]. Since these intervals cover I, the path /3 is piecewise
linear. For claim (3), suppose /3 is constant on some open interval (x, y). Then we
have

0 = I/3z:iI = I/3o:iI -I#30:xI = (Y -X) - IorI,

so tal = 0, which implies that a is constant. 03

•. Existence and uniqueness of elastic chains

Our results concerning elastic chains are established in five steps. The first step
is a very intuitive one. It says that for a path to be minimal in length, all its
subpaths must also be minimal.

Lemma 3d.2. Every subpath of an elastic chain is elastic.

Proof. Let / be an elastic chain, and let l.o:t be a subpath of /3. First of all, /3,:t is
canonical because for x E 1, we have

I(':t)o:I =/3:=+-I = I -t sl- 1/31 = X. I.1

since 3 is canonical. And if -y is path-homotopic to /,:t, then the path 3' defined by

3: =/3o: , /3:, = y', /31: =/3,-
: : is path-homotopic to /3, and its euclidean arc length differs from that of 3 by

1- 3,1. Because 3 is elastic, we have I/3'I > I/3I, and hence 1j > I/3s:,1. Hence
3,.1 has minimum length among all paths in its path-homotopy class. 03

The second step provides an important special class of elastic paths.

Lemma 3d.3. A linear path is the unique elastic path in its path class.

Proof. Let o and a be path-homotopic elastic paths, and suppose a is linear. Put
l = ,=7. Then I = ja (0) - a(1)l because a is linear and has the same
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Section 3D Elastic Chains in Sheets

endpoints as a. For t E I, we have

Ia(t) - c(0)1 < lao:tl = tl,
la(t) - (1)1 <5 Ia:11 = (1 - t)l.

Thus a(t) lies within tl units of a(O) and (1 - t)l units of a(1). Only one point
does so, namely ta(O) + (1 - t)a(1), which is a(t). Therefore a(t) = a(t), and this
identity holds for all t. 0

The third step is the construction of elastic chains by means of Proposition 2c.8
and Lemma 3d.1.

Lemma 3d.4. Every path in a sheet has an elastic chain.
Proof. Let a be a path in the sheet S. First we show that [a]p contains a minimum-
length path. Let II be the set of paths in [a]p, and let I denote infpen Ipl. If some
path p E 11 satisfies IJp = 1, then we are done. Otherwise by Proposition 2c.8
there is a uniformly convergent sequence (pi)?,=* of links in II whose limit p satisfies
Jp( < 1. Because every link in II has the same endpoints as a, we have p(O) = a(O)
and p(l) = a(1).

We prove that p and a are path-homotopic. Let M be the blanket of S, and let
" be any lifting of p to M. By Lemma 3a.7, there are liftings Wk of the paths pk

that converge uniformly to W. Because the inverse image of p(O) under the covering
map is discrete, and similarly for p(l), the paths Wk must have the same endpoints
as W for sufficiently large k. Hence p' WP p, which implies pk -p p, for sufficiently
large k. Therefore a _zp p. Now by Lemma 3d.1 there is a canonical path '3 E (p]p
whose arc length is that of p. This path /3 is an elastic chain for a. D

The fourth step brings elastic chains into the universe of piecewise linear objects,
where we can apply our previous results to them. Let a be a PL path in a sheet S,
and let x be a joint of a. The sheet S restrains a at z if for all sufficiently small
open intervals (s, t) containing x, the path a(s) , a(t) leaves S. If S restrains a at
x, then a(x) is a vertex of a fringe of S, and a turns at x. We say a is tight in S
if S restrains a at each of its joints.

Lemma 3d.5. Elastic chains are piecewise linear and tight.

Proof. Let a be a path in a sheet S, and let p be any elastic chain for a. The
lemma is trivial if p is constant, so assume otherwise. We show that for every x E I,I Q either p is straight at x or p is bent at x. In either case there is an interval [3, t]

containing a neighborhood of x such that Pa:t is bent. Since I is compact, finitely
many such intervals cover I, and it follows that p is piecewise straight. The key
fact we use is that every point y in the sheet S has a neighborhood that is starlike
about y.
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Let x be a point of [0, 1], and choose a neighborhood U C S of p(x) that is
starlike about p(x). Because p is continuous, all points s E I sufficiently close to x
satisfy p(s) E U, implying that the linear path a = p(x) c, p(s) lies in U. Because U
is starlike, it is contractible and hence simply connected (Lemma 2a.8). Therefore
a and P,:, are path-homotopic (Lemma 2a.5). By Lemma 3d.3, the path a is the
unique elastic path in its path class. Since p,:, is elastic, by Lemma 3d.2, it follows
that px:, = a. And since p is canonical, its subpath p,:a is not constant, and so Px:s
is straight. We conclude that p is straight at x if x E {0, 1}, and a little further
reasoning shows that p is bent at x if x E (0, 1). Thus p is piecewise straight.

Now let x be a joint of p; we show that S restrains p at x. Let (s,t) be an
interval containing x such that p,:t is bent. I show that for some interval (s', t')
with x E (s', t') C (s, t) the path p(s') c, p(t') does not run in S. Let C denote the
convex hull of the points p(s), p(t), and p(x). Because C is convex, it is simply
connected. Hence if C C S, then the path a = p(s) c, p(t) would be path-homotopic
to P,:t as paths in S. Since pa:t and a are both elastic, they would have to be
equal. But x is a joint of S, and so po:t cannot equal the linear path a. Therefore
C g S, which implies that some linear path between p,:, and p,:: leaves S. Since
the interval (s, t) was arbitrary, we conclude that S restrains p at x. Thus p is tight
inS. 0

The fifth and final step establishes the uniqueness property. It also shows some-
thing more, namely that for canonical paths, tightness implies elasticity.

Lemma 3d.6. Let K be a canonical, tight chain for a canonical path a. Then
lII < all, with strict inequality if 11 (1 = I" and K 96 a.
Proof. Let R and a be path-homotopic lifts of K and a. By Lemma 3a.1, we
can assume that a is simple, or else 11all could be reduced without changing (alp.
The lifting Z is also simple, because x is tight. For if R were not simple, either
two consecutive segments of R would overlap, or some subpath of R would form a
simple loop, and R would have to turn toward the inside of this loop at least once
(Corollary 3c.7). But since K. is tight, R only turns toward fringes, and there are no
fringes inside a simple loop (Proposition 3c.5). Therefore both a and W are simple
and canonical, and they have the same endpoints. It follows that if R and 3 have
the same image, then the two paths are equal. In this case K = a and we are done.
So we assume Im R $ Im a and prove JIKII < halol with strictness if - " .

Let (a,s) be the first crossing at which a leaves Im W, and let (b,t) be the
next crossing at which they rejoin. Then the paths R.:b and at:. intersect at their
endpoints alone, and their concatenation is a simple loop A. We find a linear path
in the blanket from a(s) to a point a(x); it will share a segment with R. Because
the blanket is simply connected, this path will be path-homotopic to ,x* If we
replace ;,:, by a(s) , (x), its arc length in the norm U" will not increase; if II is
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the euclidean norm, then its arc length will actually decrease. Furthermore, a will
share one more segment of . By repeated modifications of this kind, the path 2i

will converge to .

cyrt Figure d-1. Why elastic chains are short-
ao(x) eat in every norm. Wherever the paths R
/ and a form a loop, as here with Ra:b = act,

we have Ji.. , by repeated use of

11CC~bbthe polygon inequality.

Kfbi 001(t 1K Ccc

Let N denote the inside component of the simple loop A = Z..& * at,.. Because
r. is tight, its lift E cannot turn toward N at any point in (a, b). If ic.b is straight,
then we are done; put x = t. Otherwise let c be the first point in (a, b) at which
ic turns, and extend the path E.C linearly into N. Eventually it must hit N again,
either at Z(x) for x E (c,b], or at a(z) for z E (s,t]. In the latter case, we have
the desired linear path 3(s) D. a(z). The former case is ruled out, for the resulting
simple loop Zc:z * (E(z) c Z(c)) could turn toward its inside only at the two points

(z) and x(c), whereas Corollary 3c.7 requires three such turning points. 13

Two important results follow from Lemma 3d.6.

Corollary 3d.7. The elastic chain of a path a is the unique canonical, tight
chain in [a]p. 0

Corollary 3d.8. The elastic chain x for a path a satisfies j1ji 11a l l for any
normIII. 03
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Chapter 4

Flow Across Cuts and Half-Cuts

The results of the next four chapters concern a model of single-layer wiring based
on the relation of link homotopy in sheets. This model represents a layer of an
integrated circuit or printed circuit board by a structure called a design. The term
'design' should be taken in the sense of 'pattern' or 'drawing', not in the sense of
'specification'. Like a sketch, a design embodies only the geometry and topology of
a circuit layer, and none of its functionality. Table 4-1 records the correspondence
between the elements of the design model and those of the sketch model. Logically,
the design model is prior to the sketch model in that all my results about sketches
are justified by relating them to analogous results about designs.

The purpose of this chapter is to lay the groundwork for the constructions and
theorems that characterize routability and optimal routings of designs. (We will
not reach those theorems until the middle of Chapter 6.) It begins by defining the
design model and the concepts we use in analyzing it, and it proceeds to develop
a detailed theory of the design model. This theory is not an outgrowth of any
existing body of mathematics. It deals primarily with the properties and relations
of cuts and wires that it invents. Nothing you have seen before will make its results
obvious, although a familiarity with topology helps. It does, however, share with
the sketch model a concern for the congestions and capacities of cuts, and the main
results of this chapter can be understood in those terms.

As its title suggests, this chapter centers around the concept of flow. Flow is an
abstraction that is similar to, but more versatile than, the concept of congestion we
used up through Chapter 1. After defining the design model in Section 4A, we spend
a section exploring the various equivalent definitions of flow and the relationship
of flow to congestion. The flow across a cut is strongly related to the necessary
crossings of the cut by wires, which we also define in Section 4B. We prove in

pO1 Proposition 4b.3 that link-homotopic cuts have equal flow, and in Proposition 4b.3

that the flow across a simple cut equals its congestion. Later, in Section 4D, we
define the concept of a half-cut for route of a wire, and extend the definition of flow
to encompass half-cuts. We then prove an important formula (Proposition 4d.2)
relating the flow across a cut to to the flows of the half-cuts it includes. Finally,
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Section 4F shows how to relate the flow and capacity of a cut to the flows and
capacities in the links of a chain for that cut. We thereby obtain conditions under
an unsafe simple cut or half-cut can be reduced to an unsafe straight cut or half-cut.

Comparing the two models

Sketches and designs differ in two major respects. First, we use the fringes of
a sheet to represent the terminals and routing obstacles of a design, and hence
these objects have positive size. Second, in a design we consider cuts that are not
straight. Cuts and wires in the design model are links in a sheet, and they have
the homotopy relation of links. Most terms, including capacity, congestion, empty,
entanglement, proper, routable, route, safe, self-avoiding, terminal, and width, have
approximately the same meaning in both models.

Sketch model Design model Sketch Model Design Model

* feature fringe island fringe
trace wire bridge link

element detail bridge-homotopic link-homotopic
realization embedding routing region sheet

cut straight cut territory extent

Table 4-1. The correspondence between the sketch and design models. Concepts
that have the same name in both models are not shown.

The design model encompasses several ideas of what constitutes a proper design.
To each there corresponds a routability theorem saying that a design is routable if
and only if all of a certain class of straight cuts are safe. This class always excludes
trivial cuts that are path-homotopic to paths in fringes. If one requires that the
fringes of a proper design be self-avoiding, then the class includes all cuts with one
terminal that are not trivial. If one allows the terminals of a wire in a proper design
to be arbitrarily close, then the class excludes all cuts that are link-homotopic to
wires. The most natural design model differs from the sketch model in these two
ways. In order to support both models, we use the most permissive definition of a
proper sketch, one in which fringes need not be self-avoiding and the terminals of a
wire can be arbitrarily close.

4A. The Design Model

This section defines the design model and states the theorems that we set out to
prove. These theorems, the design routability theorem and the design routability
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theorem, are the deepest results of the design model and the precursors of the

corresponding theorems about sketches.
A design is essentially a set of disjoint simple links in a sheet, each one represent-

ing a wire. For technical reasons, however, we place some restrictions on these links
and their terminals. A fringe F of a sheet S is called inner if inside(F) C R 2 - ,
and otherwise F is outer. Every sheet has exactly one outer fringe and one or more
inner fringes. A wire in a sheet S is a simple link in S with two convex inner fringes
as terminals. A design on a sheet S, usually denoted fl, is a finite set of wires in S
whose images are disjoint and whose terminals are all distinct. The details of the
design fl are its wires and the fringes of S. An article of fl is either a fringe of S
that is not a terminal of fl, or the union of the terminals and the image of some wire
in Q. Equivalently, an article of fl is a component of the space Bd S U U,,Eo Im W.

Figure 4a-1. A design and one of its embeddings. Panel (a) represents a 4-wire
design on a sheet with 10 fringes. The dark polygons represent the fringes; the
space inside the inner fringes and outside the outer fringe does not belong to the
sheet. The inner fringes need not have the same shape, although they do in this
example. Part (b) shows an embedding of the design at left: the sheets of the
two designs are identical, and their wires are in bijective correspondence, with
corresponding wires being link-homotopic.

Parallel to the concept of realization for sketches is the concept of embedding
for designs. And as bridge homotopy governs the routing of traces, link homotopy

governs the routing of wires. A link that is link-homotopic to a wire w is called a
route of w. If this link is a wire, we call it an embedding of w. If fl and T are
designs on the same sheet, we say T is an embedding of fl if there exists a bijection

f: Q --* T such that w :-L f(w) for every wire w E Ql. The embedding relation is an
equivalence relation among the designs on a sheet.

The main problem concerning designs is that of finding a proper embedding
for a design: an embedding that represents a legal circuit layer. As with a sketch,
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whether a design is proper depends upon the widths of its details. We assume that
the design associates a positive width with each wire and fringe, with one important
condition: no wire may be wider than either of its terminals. A route of a wire is
always considered to have the same width as the original wire.

There are two ways a design can be improper. First, two of its articles may come
too close. The extent of a detail F of width d is the set of points in R 2 lying within
d/2 units of F. Distances here are measured by a piecewise linear wiring norm,
denoted 11 -11, that is a parameter of the entire model. The extent of an article is the
union of the extents of its details. Different articles should have disjoint extents.
Second, one of the wires of the design can have an undesirable shape. A subset X
of R 2 is said to divide a sheet S if two fringes of S fall in different components
of R 2 - X. An article of a design 0 on a sheet S is called divisive if its extent
divides S. Every wire should be self-avoiding, meaning that its article should not
be divisive.

To summarize: A design is proper if (1) its articles have disjoint extents, and
(2) its wires are self-avoiding. A design is routable if it admits a proper embedding,
and the wires in the proper embedding are called feasible embeddings of the wires
in the original design.

Figure 4a-.2. The extents of a design's details. This figure shows the thicknesses
of the wires and fringes of the design in Figure 4a-1. As this drawing makes clear,
the wires in that design were not routed arbitrarily. In fact, the embedding shown
in Figure 4a-1 is optimal with respect to a certain octagonal norm, namely that
in which each inner fringe is the set of points of distance 1 from its center of
symmetry. By 'optimal' I mean that the embedding is proper and that no other
proper embedding improves on the length of any wire.

Cuts and crossings

We analyze the routability of a design in terms of the congestions and capacities
of cuts. The definition of cut in the design model is very general: a cut of a sheet S
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is a link in S whose liftings to the sheet's blanket are simple. (Because the liftings
of a link are related by covering transformations, either all the liftings of the link
are simple, or none are.) Thus all simple links in the sheet, and all straight links
in particular, are cuts. Let X be a cut of S, and let F be a design on S. If the
terminals of X are X and Y, then the capacity of X in fl is

cap(x,f ) = il) - undth(X)/2 - width(Y)/2,

where 1lxi is the arc length of X in the wiring norm. We often abbreviate the
notation cap(x, 11) to cap(x), for we shall never compare two designs that assign
different widths to fringes.

Before defining the congestion of a cut, we need a precise notion of crossing.
Since cuts can have self-intersections, we must count crossings according to mul-
tiplicity. If a and $ are paths, a crossing of a by 0 is a pair (s,t) E I x I such
that a(s) = 0(t). The pair (s. t) is ordered; (t, s) would be a crossing of 0 by a.
The number of crossings between a and 3 is denoted cross(a, 3). Of course, the set
of crossings can be infinite or even uncountable, but in the cases of interest it will
be finite. The entanglement of a cut X by a wire w is defined to be the minimum
number of crossings of X by a route of w. In symbols,

tangle(X,w)= min{ cross(X, w') : W -L W}.

Because cuts are piecewise linear, entanglement is always finite. The congestion of
k in the design Q2, denoted cong(X, fl), is the total entanglement of X by wires in
Q, where each crossing is weighted according to the width of its wire. Formally, we
have

cong(x, 0) = width(w)tange(X, w).
WEfQ

A simple cut is called unsafe if its congestion exceeds its capacity, and safe otherwise.
Safety for nonsimple cuts is defined in Section 4F.

The intuitive meaning of congestion is this: If x is a simple cut in a design Q2,
then in any proper embedding of (2, the portion of X within the extents of wires will
have total arc length at least cong(X, Q2). If this quantity is positive, and exceeds the
capacity of X, then no proper embedding of Q2 can exist. Similarly, if the capacity
of k is negative, then the terminals of ) have overlapping extents. If these terminals
lie in different articles, then Q2 is again unroutable.~These and similar considerations motivate our definition of a major cut, one

whose safety is necessary for the design to be routable. We say that a link X is
degenerate in Q2 if )( is path-homotopic to a path in a single article of Q. A cut ( is
empty in Q if cong(X, (2) 0 and X has only one terminal. Degenerate and empty
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cuts are called minor; others are major. The thin lines in Figure 4a-1 aie major
straight cuts whose flow and capacity are equal. If any of these cut! were shorter,
that design would be unroutable.

Central results concerning designs

I prove two major theorems in the design model: one concerns routability, and
the other concerns routing. Chapter 8 uses these two theorems to prove the sketch
routability theorem and the sketch routing theorem of Section IA. The definitions in
this section are arranged so as to permit a very simple characterization of routable
designs.

Theorem 6c.1. (Design Routability Theorem) A design l on the sheet S is
routable if and only if every major straight cut in S is safe in fl.

If every major straight cut in S is safe in fl, we say that fl is safe. The design
routability theorem has two parts: safe designs are routable (Theorem 5e.6), and
unsafe designs are unroutable (Theorem 6a.5). The latter claim is the easier, and
is proved in Section 6A.

The hard direction of the design routability theorem follows from a deeper result.
It depends on the construction, presented in Section 5A, of an ideal embedding of
every wire in a safe design. The ideal embedding of a wire is the shortest route
for that wire that leaves enough space for other wires to be routed. Formally, it
has minimum euclidean arc length among all routes for the wire whose nontrivial,
straight half-cuts are safe.

Theorem 6c.2. (Design RoLting Theorem) The ideal embeddings of the wires
in a safe design form a proper design, and they have minimal euclidean arc length
among all feasible embeddings of those wires.

In other words, when routing a safe design one can do no better than to use the
ideal embedding of each wire. The proof of the design routing theorem occupies
Chapter 5 and Section 6B.

4B. Flow: A Characterization of Congestion

Thanks to Chapters 2 and 3, we already have many tools for examining designs.
We use them here to define formally the concept of a necessary crossing. As a
consequence we are able to make sense of the congestion of nonsimple cuts. We
characterize the congestion of a simple cut in terms of its necessary crossings by
wires, and derive a statistic called the How across a cut which agrees with congestion
for simple cuts. The definition of flow turns out to be much more useful than the
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original definition of congestion, in part because it makes sense for cuts that are
not simple, and in part because the topological machinery of Chapter 3 applies
powerfully to the liftings and crossings that define flow. This power shows up
immediately in the proof of Proposition 4b.3, which says that link-homotopic cuts
have equal flow.

Necessary crossings in blankets

Intuitively, a necessary crossing between two links is one that cannot be re-
moved by a link hornotopy. Given two links in a blanket, one can tell whether they
necessarily cross by examining their fringes.

Definition 4b.1. A simple link a in a blanket M cuts another link/3 in M if
(1) the endpoints of a and /3 lie on four distinct fringes of M, and
(2) the endpoints of /3 lie in different scraps of M - Im a.

If a cuts /3, then Im/3 must intersect Im a. For Im /3 is a connected set; if it did
not intersect Im a it would lie entirely in one component of M - Im a. Furthermore,
whether or not a cuts /3 depends only on the terminals of /3, and not on any other
properties of /3. Hence if #3 is link-homotopic to another link fl', then

a cuts/3 o= a cuts /3',

since (by Corollary 3a.5)/3 and 0' have the same terminals. Thus if a cuts /3, they
make a crossing that cannot be removed by applying a link homotopy to /3.

On the other hand, if a does not cut /3, the crossing (if any) between a and /3
can be removed by applying a link homotopy to /3. For if a does not cut /3, then
either (1) /3 shares a terminal with a, or else (2) the terminals of /3 lie on the same
side of a. In either case, there is a link /3' with the same terminals as /3 but whose
endpoints lie in the same scrap of M - Im a. By Proposition 3a.3 we can assume
that /3' is a link in that scrap, so that a and /3' do not cross. Corollary 3a.5 implies
that /3' =L /3. Thus the relation 'a cuts /3' captures the intuitive notion that "/3
makes a necessary crossing with a".

The cutting relation has several other nice properties. If a' is simple and link-
homotopic to a, then

a cuts/3 . a' cuts/3,

because homotopic simple links separate the fringes identically (Proposition 3c.4).

Moreover, if both a and /3 are simple, then the relation 'a cuts /3' is symmetric. For
, if a does not cut /3, then as shown above, some link /3' E [/3]r. lies in a single scrap

of a. Clearly 03' does not cut a, because their images are disjoint. Hence /3 does
not cut a. We conclude that when a and 03 are simple,

a does not cut /3 =/3 does not cut ar,
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Section 4B Flow: A Characterization of Congestion

and the converse also holds by symmetry. Hence 'a cuts 3' is a symmetric relation
if a and 3 are simple.

Necessary crossings in sheets

The notion of necessary crossing for links in a blanket carries aver to links in a
sheet. To determine whether a crossing between two links in a sheet is necessary,
we lift those links to the blanket in such a way that the lifts cross at the same point
the original links cross, and check whether one lift cuts the other. The elegance and
usefulness of this definition are two major motivations for using blankets to study
wire routing.

Definition 4b.2. Let w be a link in a sheet S, and let M be the blanket of S
with covering map p: M --+ S. Let X be cut in S, and let j be any lift of X to M.
Suppose that (s, t) is a crossing of X by w. Because p( (s)) = w(t), the link w has a
unique lift Z such that i(s) = Z(t). We say that j and Z reflect the crossing (s, t).
The crossing (s, t) of X by w is necessary if k cuts Z. Two crossings of X by w are
similar if the corresponding lifts of w are identical.

The initial choice of j is irrelevant; it amounts to a choice of base point for the
blanket, and as shown in Section 2B this choice does not affect the topology. If one
chooses two different lifts of x, say j and 5', then one obtains different lifts E and VY
of w, and Proposition 2b.7 gives us a covering transformation h: M --+ M such that
h o k = ' and h o C =. Z'. Since the relation ' cuts Z' depends only on topological
properties of M, , and Z, which are preserved by the homeomorphism h, the link k
cuts Z if and only if k' cuts Z. Hence necessity for crossings is well defined, and by
similar reasoning, similarity is also. The technique of lifting links to reflect certain
crossings among them will appear in future definitions, and we shall normally take
for granted the fact that the choice of the first lifting-though not the choice of
later liftings-is immaterial.

A definition equivalent to Definition 4b.2 would hold Z fixed and vary k accord-
ing to the crossing.

By counting necessary crossings we obtain a measure of the entanglement of
two links. Two immediate consequences of Definition 4b.2 are that similarity of
crossings is an equivalence relation, and that two similar crossings are either both
necessary or both unnecessary. We define the quantity wind(X, w), the winding of X

* and w, to be the number of similarity classes of necessary crossings between X and
w. For any lift k of X, it is the number of lifts of w that are cut by k. (Each such
lift makes crossings with k, and these crossings form a similarity class of necessary
crossings of X by w; conversely, every similarity class corresponds to a particular lift
of w that is cut by j.) Equivalently, since cutting is symmetric, wind(x,w) is, for
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R i)(v)

..... ,-...r.. ..... : -.'4 
...........

"' (v)

cii

(V))

Figure 4b-1. Necessity and similarity of crossings. In part (i), the wire W makes
six crossings with the cut X. The crossings fall into three similarity classes: cross-
ings 1, 2, and 3 are similar and necessary; crossing 4 is necessary but not similar tothe others; crossings 5 and 6 are similar and unnecessary. Parts (ii) through (iv)

show the lifts of w that correspond to these crossings, drawn in a fashion that
emphasizes the covering map. Portions of these lifts are dotted to show that they
run on a different level of the blanket from the lifting of X. Part (v) summarizes
the liftings of w in a way that emphasizes their topology. Because W is simple,
these liftings do not intersect.
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any lift ; of w, the number of lifts of X that cut, or are cut by, 5. The winding of
X and w in Figure 4b-1 is 2.

Summing the winding of X over the wires in a design Q, and weighting each
number according to the width of the wire, we obtain a measure of congestion. I
call it the flow across x in the design Ql:

flow(x, l) = E width(w) wind(X,w).
wEOl

The flow statistic is invariant under link homotopy, both of wires and of cuts. Thus
if T is an embedding of the design Q, then flow(x, T) = flow(x, l). Similarly, if a
and 3 are link-homotopic cuts in the sheet of QZ, then flow(a, fQ) = flow(3, Q). To
emphasize this fact, I give it a formal proof.

Proposition 4b.3. Link-homotopic cuts have equal flow.

Proof. Let a and # be cuts of a sheet S, and let w be a wire in S. Lift w to the
blanket of S, obtaining a link i. The flow of w across a is the number of lifts a
of a that cut Z. Similarly, the flow of w across /3 is the number of lifts 0 of /3
that cut Z. Assume now that a and /3 are link-homotopic. By Proposition 3a.6,
there is a bijective correspondence between the lifts of a and the lifts of 3 such
that corresponding lifts are link-homotopic. Hence if a lift of a cuts Z, so does the
corresponding lift of /3, and vice versa. Therefore wind(a,w) = wind(/3,w). Since
this holds for all wires w, it follows that flow(a, f?) = flow(/3, Q) for any desig-i Q
onS. D

Proposition 4b.3 allows us to extend the concept of flow to all links. Since all
cuts in a link-homotopy class have the same flow, and path-homotopic links are also
link-homotopic, it suffices to define the flow of a link to be the flow of any path-
homotopic cut. This works because every path class of links in a sheet contains a
cut. For if a is a link with lifting &, there is by Proposition 3a.3 a simple link 0
between the endpoints of &. By Lemma 2a.5, /3 is path-homotopic to 6, and hence
the projection /3 of /3 to the sheet is path-homotopic to a. The link /3 is a cut
because /3 is simple.

Flow and congestion

We now address the question of how congestion compares to flow. The answer
is that flow is never greater than congestion, and for simple cuts they are equal.
The following two lemmas clarify the relationship between flow and congestion.

Lemma 4b.4. Let X be a cut of a sheet S. Every wire w in S satisfies
tangle(X,w) > wind(y,w).

- 119 -



Flow Across Cuts and Half-Cuts Chapter 4

Proof. Let M be a blanket of S with covering map p: M --+ S. Denote by n the
winding of w and X. Let Z be any lift of w to M. Every necessary crossing of X by W
represents a lift of X that cuts ; dissimilar crossings correspond to different lifts ot
,. Let i,..., ,, be the lifts of X that cut C. Let v be any route of w; we show that
cross(y,, v) n, thus proving that tangle(X,w) _ n. Using Proposition 3a.6, lift v
to a link U E [V]L. Then for 1 < i < n, the link ji cuts Z3, so we have j(s) = i;(ti)
for some s,, t, E I. Projecting to the sheet, we see that each pair (si, ti) is a crossing
of ,< by v. All these crossings are distinct. If ti = tj for some i and j, then

,(s,) = jS(sj), so by uniqueness of liftings, we cannot also have si = s unless
= j. We conclude that cross(X, v) > n as claimed. 13

The other direction is somewhat harder, and it fails for cuts that are not simple,
as shown in Figure 4b-2.

---- Figure 4b-2. A cut whose flow and conges-
\. /tion differ. The flow of w across X is zero,

Sbecause X is homotopic to a cut (striped
- path) that does not intersect w. The en-
"tanglement of X with w is nonzero, however;

- every link that is homotopic to w crosses X
X at least twice.

Lemma 4b.5. Let F be a set of disjoint simple cuts in a sheet S, and let w
be a link in S. There is a link v E [W]L such that cross(y, v) = wind(y, v) for all
-1 F.

Proof. Let M be a blanket of S with covering map p: M -+ S, and let Z be any
lift of w to M. Now let 7i, ... , y,, be the links in M that lift elements of f and
cut D. (Here ni is Z-,,Er wind(-y, w).) Two lifts 5i and 5j cannot intersect unless
I = j. For if j,(s) = j(t), then 5i and j lift the same link -, since the elements

* of F are disjoint. Thus yf(s) = -f(t), whence s = t because -Y is simple, and thence
= by uniqueness of liftings. Figure 4b-3 illustrates the case where F contains

but a single cut x.
We construct a path a that crosses each lifting ji exactly once, and does not

intersect any other lifting of any cut in F. In view of Lemma 4b.4, the conclusion
will follow at once. Let A and B be the terminals of Z. Denote by L, and R, the
scraps of M! - Im 5, that contain A and B, respectively. When i y j, the thread
[rn must lie entirely in L, or in R. By renumbering the lifts of -y. we may assume
that Im i E R, whenever j > i. For each i such that 1 < i < n, the set L,+1 n R,
is a scrap-one component of R, -Im y,+.
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a 3

Figre 4b-3. Why a simple cut's congestion does not exceed its flow. The n lifts
of the simple cut X that cut C decompose the blanket into n + 1 parts. One can
construct a link in [P1L that crosses these lifts only once each: the concatenation
of the paths ai and A, is such a link. If this link crosses any other lifts of X (thin
lines), the crossings can be removed by inserting detours as shown.

First we establish the points at which V crosses the lifts ji. For 1 < i < n, choose
a straight path that crosses p o j exactly once and crosses no other cuts in F. Let
A, be a lifting of either this path or its reverse, such that Ai(O) E Li and A(1) E R,.
Then A, makes exactly one crossing with a lifting of a cut in r; that lifting is j.
Now we connect up the segments A, with paths that intersect no liftings of cuts
in F. By Proposition 3a.3, there is a simple half-link ca0 in L1 from A to A,(0),
and a simple reverse half-link c,, in R,, from An(1) to B. For i = 1, 2, ... , n, use
Proposition 3a.3 to find a simple path a, in Lj+j l R, from Ai(1) to Aj+ 1(0). Define
a to be the path

a 0 a.* A1 * al An * an.

Then a crosses each of the lifts ji exactly once. It may intersect some other lift of
a cut in F, however.

Now we modify the subpaths a so that it intersects no liftings of cuts in r except
1, ... , ,,. Using the fact that Im ca is compact, one can check that it intersects

only finitely many lifts of cuts in F. By induction, therefore, it suffices to show
that a single unwanted crossing of a can be removed. Suppose that a crosses some
lift 0 01,, ... , 5,,} of a cut X E r. Since 5 is a simple link, it splits M into
two scraps. And because j does not cut Z, at least one of these scraps contains
portions of both A and B. Let N be such a scrap. Replace the portions of a that
leave N by paths that skirt closely enough not to intersect any lifting of a cut in
F. (Such a skirting path may be constructed using a tubular neighborhood of Im X
that intersects no other cut in r.) The resulting path is a still piecewise linear link
from A to B, and it makes fewer crossings with lifts of cuts in F than it used to.
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Eventually we obtain a piecewise linear link U: A - B whose projection v makes at
most n crossings with the cuts in F. Of course, the number of crossings it makes is
actually n, by Lemma 4b.4. Corollary 3a.5 says that 9 is link-homotopic to ;, and
hence its projection v is link-homotopic to u. 03

If in Lemma 4b.5 we take F to be the set containing a single cut x, we deduce
that tangle(X,w) !_ wind(x,w) whenever X is simple. Combining this result with
Lemma 4b.4, and summing over all the wires in a design, gives us the desired answer.

Proposition 4b.6. If X is a cut of a design fl, then cong(x, 0) _ flow(x, f),
with equality if X is simple. []

Our interest in congestion comes from the design routability theorem (6c.1),
which involves only straight cuts. Since congestion and flow agree for all simple
cuts, we are free to discard the former in favor of the latter. And as Proposition 4b.3
suggests, flow is the more natural concept, and is far easier to work with. Henceforth
we use the flow statistic exclusively, except in Chapter 8 when proving the sketch
routability theorem.

4C. Relations Among Cuts and Wires

The main results of this chapter concern the flows across cuts. In order to relate the
flows of different cuts in the same design, we first study relationships among simple
links in a blanket. Of particular concern is the relation of one link cutting another,
which forms the basis for the definition of flow. This section gives a condition
under which one link must cut another, stated in Lemma 4c.1 below, and several
conditions under which two links cannot cut one another, such as when they lift
routes for wires in the same design.

We will use the following result many times.

Lemma 4c.1. Let a and /3 be simple links in a blanket such that a cuts /3,
and let -y be a simple link from a terminal of a to a terminal of /3. Every link that
cuts -y also cuts either a or /3.

Proof. Without loss of generality we may replace a, /3, and -f by link-homotopic
simple links. We may also reverse a, /3, and -y as desired. Choose simple links a
and 3 that intersect in one point only, say a(s) =3(t), and let -f be the simple link

POO$ Q0:8 *)3t:i. By the symmetry between left and right we may assume that /3(1) E
left(a), as in Figure 4c-1, and it follows that a(O) E left(o).

I claim right(-y) = right(a) U right(/3). The connected set right(a) does not
intersect Im -y, but it borders on -y from the right at 1(0). Hence right(-y) D right(a).
Similarly right(O) does not intersect Im -y, and it borders on -y from the right at 7y(l).
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Section 4C Relations Among Cuts and Wires

Hence right(y) _ right(O). If a point x lies neither in right(a) nor right(O3), it must
lie on Im a - right(3), or on Im # - right(a), or in left (a) n left(/3). In the first
two cases, x falls on Im -. In the last case, draw a piecewise linear path from x to
any point of Im a or Im /. The first point at which it intersects Im a U Im /3 must
lie on Im -, because Im a - Im -f C right(ft) and Im /3 - Im - C right(a), whereas
x lies in left(a) n left(/3). Of course, the path intersects a or /3 from the left. It
follows that it intersects -y from the left, and hence x lies in left(7f). We conclude
that right(-y) = right(a) U right(#), and left(-y) = left(a) n left(/).

Figure 4c-1. A link formed when two oth-
ers cross. The link 7, shown in grey, com-
prises parts of a and 83. The left side of -y

ct(1) (dark shading) is the intersection of the left
Dsides of a and P; the right side of 7 (light

shading) is the union of the right sides of a
adi

Now let q be a simple link that cuts 7. Then one terminal of q lies entirely in
left(a) n left(/#), and the other lies entirely in right(a) U right(/3). Call the second
terminal X. If X intersects right(a), then either it lies entirely in right(a), in which
case q cuts a, or else it is a terminal of a. It cannot be the fringe containing a(0),
because this is a terminal of 7. Hence X must be the fringe containing a(1), which
lies wholly in right(/3). Then q/ cuts /3. Similarly, if X intersects right(g), then
either X C right(/#) or else X is the fringe containing /(0), which is a subset of
right(a). In either case q cuts a or /. E3

Liftings of wires and their routes

Many of the links we consider will be liftings of wires, or routes of wires, taken
from the same design. Such links, if simple, are called coherent.

Definition 4c.2. Let T be a set of links obtained by replacing each wire in a
design by a route of that wire, If the links in T have simple liftings, then any set
of these liftings is called coherent. If a and /#are simple liftings of links in T, then
we say a coheres with /3.

Coherent links do not cut one another. If they did, their projections to the sheet
would have nonzero winding; and since winding is invariant under link homotopy,
there would be two wires in a design with nonzero winding. But I claim that if W
and v are wires in a design, then wind(w, v) = 0. For if w $ v, then w and v do not
intersect, and hence their lifts cannot intersect. Or if w = v, then since this link is
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simple, its lifts are all disjoint. In neither case can a lift of w cut a lift of v, and
thus wind(w, v) = 0.

Next we show that coherent links cannot have both terminals in common without
being equal. This is a corollary of a result about link homotopy in blankets that is
useful in its own right.

Lemma 4c.3. If 77 is a link with two terminals, then no two distinct lifts of i1
are link-homotopic.

Proof. Let a and /3 be link-homotopic lifts of 77. We prove a = /3. By Corol-
lary 3a.5, the points a(0) and 3(0) lie on the same fringe X, while a(1) and /3(1)
lie on a different fringe Y. These fringes are different because r has two terminals.
Let a be a simple path in X from 3(0) to a(0), and let r be a simple path in Y
from a(1) to 3(1). The loop A = a* r,/3a is inessential because the blanket M
is simply connected.

! The loop ,. ^ (The loop g.

Figure 4c-2. Link-homotopic lifts of a wire are identical. For the fact that a
and 35 are link-homotopic implies that the loop A shown here is inessential, and
consequently its projectionjp is inessential. It would not be inessential if it wrapped
around either terminal of w, and so a and r are actually constant paths.

Now we project A to the sheet S. Because A is inessential in M, the resulting
loop jA is inessential in S. Therefore p is also inessential in the larger sheet S' -
S U inside(p(Y)). Now

JA = q *(p o) * (p o a).

In S' the path p o r is inessential, and hence p is path-homotopic to p o a in S'. So
p o a is inessential in S'. But p o o lies in p(X), which by Lemma 3b.1 is a retract
of S'. So p o ar is inessential in p(X), and hence in S. Therefore the endpoints of its
lift ar are equal, which means a(0) = 3(0). Hence a =/3 by uniqueness of liftings
(Theorem 2b.2). 01

Corollary 4c.4. If a and/3 are unequal coherent links, then /3 has a terminal
that is not a terminal of a.
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Proof. Let p denote the covering map. If p o a p o 8, then these links are link-
homotopic to distinct wires in a design. In this case all four terminals belonging to
p o a and po 3 are different, and the same goes for a and 3. On the other hand, if
p o a = p o 8, then this link is homotopic to a wire, and hence has two terminals.
Now Lemma 4c.3 shows that a and / are not link-homotopic. We cannot have

a =L /3 either. Thus a and 3 have at least three terminals among them. 0

The following lemma derives a further fact about coherent links. It will be
needed in Chapter 5.

Lemma 4c.5. If a and / are unequal coherent links, then the endpoints of /
lie on the same side of a.

Proof. Let p denote the covering map. If p o a - p o 3, then the terminals of
p o a differ from those of p o /, and since coherent links do not cut one another,
the endpoints of 6 must lie on the same side of a. We may therefore assume that
a and / are liftings of the same path q/, which is link-homotopic to a wire W. If /
does not share any terminals with a, we are done, because # does not cut a. So
assume that a(O) and #(0) lie on the fringe X. Then a(1) and 3(1) lie on different
fringes, by Corollary 4c.4.

Because Y7 is link-homotopic to a wire w, Proposition 3a.6 provides lifts a' and
3' of w that are link-homotopic to a and 6, respectively. Since a' and #' are distinct
lifts of a simple path, they do not intersect, and hence the endpoints of 6' lie on
the same side, say the left, of a'. Let F: a =-L a' and G: 3 =-L /' be lifts of a
link homotopy between q/ and w, as in Lemma 3a.6. For every t E I, the point
F(O, t) separates the fringe X into two components, a left component and a right
component. We show that for every t, the point G(0, t) lies to the left of F(0, t). This
is true at t = 1, because G(0, 1) = #'(1) and F(0,1) = a'(1). For no t are F(O,t)
and G(0, t) equal, else F = G by uniqueness of liftings and thus a = #. Hence by
continuity of F and G, the point /(0) = G(0, 0) lies to the left of a(0) = F(0, 0).
Also the fringe containing /(1) lies in left(a) because it lies in left(a'). (Here we
are using Lemma 3c.4.) Hence both endpoints of / lie left of a. 0

A generalization of simplicity

Though the design routability theorem refers only to straight cuts, the results
that lead to it use many cuts that are not straight, nor even simple. Often to make
a proof go through one need not assume that a cut is simple, but rather that the cut
respects the design in question. This relation is discussed in detail in Section 4E.
For now we define a weaker relation, called weak respect, that is useful in obtaining
upper bounds on flow.
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Definition 4c.6. Let 12 be a design on a sheet S. A cut X of S weakly respects

the design fl if whenever
(a) w is a wire in fi,
(b) Z and ' are two lifts of w that share a terminal, and
(c) j is a lift of x that cuts C,

the terminals of ' lie within the same side of .

For a cut to respect a design weakly means, in essence, that each fringe of the
blanket contributes at most one necessary crossing to the flow across the cut. As one
can check, this relation is invariant under link homotopy. In other words, if X weakly
respects a design 0I, then every cut X' in [XJL weakly respects every embedding of
SQ. Figure 4e-1 illustrates weak respect; Figure 4c-3 illustrates its absence.

x p

Figure 4c-3. Lack of weak respect. The cut X (at left) does not weakly respect
the wire w (or rather, the one-element design {w}), because two lifts of w that
share a terminal cut the same lift of X (at right).

If two lifts of a wire share a fringe, then some path from one to another wraps
around the fringe one or more times. Figure 4c-3 shows a cut that does not weakly
respect its design; it wraps around the terminal of a wire. This figure suggests that
simple cuts have weak respect for all designs, a fact which we now prove.

Lemma 4c.7. Simple cuts respect all designs weakly.

Proof. Let M be a blanket on a sheet S, with covering map p: M --+ S. Let X
be a simple cut of S, and let a be any lift of X. Suppose that ; and ;' share a
terminal and lift the same wire in S. We assume that a cuts Z, and show that the
terminals of Z' lie on the same side of a. For some i,j E {0, 1, the endpoints '(i)
and Z'(j) lie on the same fringe F. Because p o Z = p o ' is a wire, its terminals
are distinct, and hence i = J; we may assume i = j = 0. Let a,, ... , an be the lifts

of X that cut Z. (We have n > 0 because a cuts 0.) Being distinct liftings of the
simple path X, the links {ail cannot intersect. Assume that a, is chosen so that
a 2, ... , an lie in the scrap of M - Im a, that does not contain F. Let A denote
the scrap of M - Im a, that contains F.
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X 
CL

F

Figure 4c-4. Why a simple cut respects all designs weakly. The paths a,, . a.., ,
are the lifts of a simple cut X that cut the lift - of the wire w. Here &' is another
lift of w that shares terminals with Z and a,. The link j is a lift of X that is to ZY
as a, is to w. Where can it go? It must either cut C or cross a,, but it can do
neither.

0 Because Z and Z' lift the same link w, there is a covering transformation h: M -

M such that h o Z = Z'. If h had a fixed point x, then h and idM would be lifts of
p agreeing at x, and Theorem 2b.2 would imply h = idM. But h is not the identity
transformation, because w 9 i', so it has no fixed points, and hence a1 9 h o a,.
Because T is a homeomorphism, the lifts of X that cut Z' are precisely h o a1 ,
... h o an. Also for this reason, and because p o h = p, the link h o a, lies to the
left of h o aj whenever i < j. Note also that h(F) is F.

We show that both terminals of Z'. lie in A. Suppose not. Then either a, cuts
1z, or else the two links share a terminal. In either case, h o a1 lies in A. (See
Figure 4c-4.) For if a, cuts Z', then a, = h 0 a, for some k > 1, and h o a1 lies on
the side of h o aok that contains F, namely A. If instead a1 shares a terminal with
I', that terminal cannot be F, and again h o a, lies in A. Hence in either case,
h o a, 0 a, for any m, so h o a1 does not cut Z. Let 77 E P-IL be simple and not
intersect h o a1 . The terminal F lies in A, so by assumption, the other terminal of
V must have points outside A. By modifying the portion of il lying in M - A, we
can obtain a simple link 17' E [PIL that does not intersect h o a1 either. Then h o a,
does not cut qi', and hence does not cut Z'. But we know that h o a, does cut Z'.
This contradiction shows that the terminals of Z' must lie in A.

The rest is easy. Since a = ak for some k, neither terminal of a lies in A, while
both terminals of Z' lie in A. Hence a cannot cut Z', and the two links cannot even
share a terminal. Therefore the terminals of Z' lie on the same side of a. D
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4D. Properties of Flow

The flow across a straight cut measures the total width of the wiring that must pass
between two fringes. Another quantity that needs analysis is the amount of wiring
that must pass between a fringe and a wire. To define it we introduce the concept

of a half-cut, a half-link that begins on a fringe and ends on a wire.
This section defines half-cuts and explores their properties. Fortunately, we can

study the attributes of half-cuts without introducing a lot of new concepts. Instead
we define properties of half-cuts in terms of the properties of their associated cuts.
In particular, the flow, degeneracy, triviality, and weak respect of a half-cut are
defined in terms of the cut properties of the same names. (Much of the complexity
of this theory, but also much of the interest, arises because the associated cuts of a
half-cut are not, in general, simple, or even link-homotopic to anything simple.) In
particular, we can relate the flows across half-cuts by analyzing flows across cuts.
In this section we start to examine the methods for relating three or more cuts
simultaneously. One important result is Proposition 4d.2. Whenever a wire (or
a route of a wire) makes a necessary crossing with a cut, the half-cuts of the cut
ending at that crossing have flows whose sum, when added to the width of the wire,
equals or exceeds the flow across the cut.

Definition of a half-cut

Half-cuts arise as follows. Suppose w routes a wire in a design fl. Formally,
a half-cut for w at t is a half-link a whose liftings are simple and which satisfies
a(l) = w(t). Thus oa(O) lies on a fringe and a(l) = w(t). For example, if (s,t) is a
crossing of a cut X by a link w, then the half-links X0:o and Xi:. are both half-cuts
for w at t. When the crossing (s, t) is clear from context we often omit mention of
w and t, and refer to Xo:. and Xl:, simply as half-cuts.

Attributes of half-cuts

Like cuts, half-cuts have flow and capacity in the context of a design. Let a be
a half-cut for w at t, and suppose a(O) lies on the fringe F. The capacity of a is
defined to be

cap(o,w) = al - width(F)/2 - width(w)/2.

Since w is a route of a wire in a particular design, the widths of w and F are taken
from this design. We sometimes abbreviate cap(u,w) to cap(a), even though u
alone does not specify which link w is involved.

The flow across a depends even more strongly on w and on the crossing (1, t)
of a by w. If Q is a design, we define flow(a, Q) to be flow(a, wt,, Q), which by
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Section 4D Properties of Flow

3 IFigure 4d-1. The flow across a half-cut.
The half-link a is a half-cut for the wire w
at t. If the wires in this design have width 1,
then the flow across a, defined as the flow
across the link a *w:1, is 2.

definition is flow(y, Q) where -y is any cut in [a * wt:1)p. Thus the flow across a
half-cut is defined in terms of the flow across a cut.

This definition of flow makes intuitive sense, for if w is a route of a wire in 11,
no wire in Q can make a necessary crossing with w. Hence the necessary crossings
of a * w,:, must somehow reflect necessary crossings of a. From a technical point
of view the definition makes less sense, for two reasons. First, it can happen that
no link in [a * WtAIL is simple, and thus we are forced to consider the flow across
nonsimple cuts. Second, the choice of r * Wt:l rather than a * wt:0 is arbitrary, and
yet significant: these two links can have different flows, even in a design consisting
of w alone.

Both technical difficulties can be overcome by extending the notion of weak
respect (Definition 4c.6) to half-cuts. We do so by referring again to cuts. If a is
a half-cut for w at t, then the cuts in the sets [a * Wt:OIL and [a * Wt:IL are called

associated to a. The half-cut a weakly respects a design Q if every cut associated
to a weakly respects Q. Since weak respect is invariant under link homotopy, this
condition is not as restrictive as it sounds. Lemma 4d.3 below shows that if a

respects fl weakly, then all associated cuts of a have the same flow in f0.
Associated cuts help us define other properties of half-cuts as well. For instance,

we call a half-cut a degenerate if it has a degenerate associated cut. Similarly, a
half-cut is trivial if it has a trivial associated cut. Triviality can be cast in terms
of liftings. Let a be a half-cut for w at t, and let F and ; be lifts of a" and W that
reflect the crossing (1,t). In other words, E(l) = Z(t). Then a" is trivial if and only
if the terminal of a is a terminal of .

Equivalence of half-cuts

If a and r are homotopic as half-links, meaning that a(l) = r(l) and or * ? is
04 trivial, then or is a half-cut for w at t if and only if r is. We also have '*w t:l -L *Wt:l,

and hence (by Proposition 4b.3) homotopic half-cuts have equal flow. There is,

however, a much coarser equivalence relation on half-cuts that preserves flow.

Definition 4d.1. Let a and r be half-cuts for w at s and v at t, respectively,

where w !L v. Suppose J and a are lifts of w and a' such that &(I) = J(s). Also
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Flow Across Cuts and Half-Cuts Chapter 4

Figure 4d-2. Equivalence of half-cuts. A
half-cut a for w at s is akin to a half-cut r for
v at t if there are lifts F and ; reflecting the
crossing (1,s), and lifts F and V reflecting
(1,t), that share fringes as shown here.

suppose i; and F are lifts of v and -r such that F(1) = 9(t). We say that o, and r are
akin if the lifts may be chosen so that Z =L iU and a and F have the same terminal.

If a and r are akin, then Corollary 3a.5 implies that 2 * Z,:, and F * itj are link-
homotopic, and hence their projections to the sheet are link-homotopic also. It
follows from Proposition 4b.3 that a and r have the same flow in any design.

In fact, all the properties we define for half-cuts, except geometric quantities like
0 capacity, are invariant under kinship-the relation of being akin. The reason is that

half-cuts that are akin have link-homotopic associated cuts. Hence half-cuts that
are akin are equally degenerate, and they have weak respect for the same designs.

Mid-cuts

Just as there are cuts from fringes to fringes and half-cuts from fringes to wires,
there are mid-cuts from wires to wires. We shall occasionally have use for them.
Suppose v and w are routes of wires in a design f) on the sheet S. For s, t E (0, 1), a
mid-cut between v at s and w at t is a mid-link r in S whose liftings are simple and
which satisfies r(O) = v(s) and r(1) = w(T). We define the properties of mid-cuts
by analogy with half-cuts. The capacity of the mid-cut r is

cap(T) = 111 - width(v)/2 - width(w)/2,

and its associated cuts are the cuts in the sets [V, * T * Wt:,iL, for ij E {0, 1}. A
mid-cut respects a design weakly if all its associated cuts do, and it is degenerate
if its associated cuts are. We define the flow across the mid-cut r to be the flow
across the link vl:0*r*wt:l. I leave it to the reader to adapt the definition of kinship
(4d.1) to mid-cuts.

Together with cuts, half-cuts and mid-cuts are collectively known as subcuts.
All liftings of subcuts are simple sublinks.

Combining two half-cuts

The main impact of the study of blankets is that it allows us to relate the flows
of different cuts. These relationships are the theme of the rest of the chapter. Our
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first result relates the flow across a cut c to the sum of the flows across half-cuts
X0:, and Xl:. for a link w. It says that if the half-cuts lie on "opposite sides" of w,
then the flows across these half-cuts, and w itself, all contribute to the flow across X.
This result was first claimed (in a different model) by Cole and Siegel, who used it
in [6] without proof. Our knowledge of the topology of blankets allows us to give a
rigorous proof of a more general claim.

Proposition 4d.2. Let X be a cut of a sheet S, and let fl be a design on S.
Suppose that (s, t) is a necessary crossing of X by a route p of a wire w in fl. Then

flow(x, f) _ flow(Xo:., l) + flow(xi:., 11) + width(w),

with equality if X respects w weakly.

Proof. Let M be a blanket for S, with covering map p: M -. S. Because the
crossing (s, t) is necessary, there are lifts j of X and 'of p such that k(s) = W(t), and
k cuts '. Let X and Y be the fringes of M containing (O) and k(l), respectively,
and let Z be the fringe of M containing W(1). Assume without loss of generality
that Z C right(j). Let a be a simple link in right(X-) from X to Z. Then by

Proposition 3c.2, we have Im x E left(5). Let 0 be a simple link in right(k) Il left()
from Y to Z. By Corollary 3a.5, we have the relations

LX0:.* Pt:i and 3. LXi:*pt:i.

Write a = p o 5 and / = p o $. Projecting to the sheet, we have a C--L Xo:. * Pt:i and
0 =L X1:& * Pt:i. Hence by Proposition 4b.3 and the definition of the flow across a
half-cut, we have flow(Xo:., fl) = flow(a, fl) and flow(XI:., f1) = flow(#, f). Hence
it suffices to prove

flow(x, fl) >_ flow(a, fl) + flow(/3, fl) + width(w), (4-1)

with the reverse inequality

flow(x, 1f) !5 flow(ce, f1) + flow(/3, f1) + width(w) (4-2)

holding also if X respects fl weakly.
Bounds on the flow across x come from comparing the links that cross k to those

that cross a and /. Every lift U of v that cuts j contributes exactly width(v) to
flow(x, fI), and similar statements hold for flow(a, Q) and flow(o, fl). So suppose

' that Z lifts a wire v E fl. We show that if U cuts a or /, then i5 cuts k. By
Proposition 3a.6, there is a lift Z of w in [PL; its terminals are those of W, and hence

cuts Z. Since & runs from a terminal of 5 to one of 5, Lemma 4c.1 shows that if 9
cuts 2i, it must also cut either or 5. Similarly, if U cuts /3, it must also cut either

or Z. But the links U and Z cohere, and therefore they do not cut one another.
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Figure 4d-3. Combining half-cuts to form a cut. At left, the straight half-cuts

X0: and Xil:s for w at t connect to form the straight cut X. Because the crossing
(s, t) of X by w is necessary, the lift j cuts the lift Z, at right. Every wire lifting
that cuts or 3 also cuts because it cannot cut C. Conversely, every wire lifting
that cuts j also cuts & or f3 unless it shares the terminal Z with L.

Hence every lift i that contributes to the flow across a or /3 contributes the
same amount to the flow across X. This observation alone implies that flow(x, S)
is no less than flow(a, f) +flow(/3, S). The term width(w) in inequality (4-1) is

accounted for by the lift Z of w. It cuts k, but does not cut a or 8, since it shares
the terminal Z with the latter links. So C contributes an extra amount width(w) to
flow(x, f?). Thus inequality (4-1) is established.

Now we suppose that X weakly respects w, and prove inequality (4-2). The
threads Im &, Im f, and Im j form a web of 3 threads. By Lemma 3b.7 and Propo-
sition 3b.8, they separate M into 4 scraps. Three of these, call them A, B, and
C, border on the threads Im &, Im /, and Im k, respectively; the fourth scrap, call
it N, borders on all three threads, and it contains no fringes. Let iY lift any wire
v E Q. If £? cuts j , it must have one terminal in C, and its other terminal, if not
Z, must lie in A, B, or N. It cannot lie in N, because N contains no fringes. And
if it lies in A or B, then 9 cuts & or f, respectively. Hence the only way that i; can
contribute to the flow across X without contributing to the flow across a or / is if iY
has Z as a terminal and cuts k. And since different wires in a design have different
terminals, this implies v = w. Because X weakly respects w, Definition 4c.6 says

that no lift of w other than 5 can cut k and have Z for a terminal. Inequality (4-2)
follows. 03

Respect and half-cuts

As previously mentioned, the definition of flow for half-cuts is somewhat ar-
kbitrary; the associated cuts of a half-cut can have quite different properties. In

particular, some can respect a design without the others doing so, and they can
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have different flows, even considering only the half-cut's wire. These facts are illus-
trated by Figure 4d-4. But if a half-cut respects its wire weakly, this problem goes
away.

Figure 4d-4. Lack of weak respect in a half-cut. Even a simple half-cut can
easily lack weak respect for its wire, as this example shows. At left, a is a half-cut
for w at t. The associated cut a * wt:o is simple and therefore respects w. But

Sor * wt:l does not respect w. The picture at right shows two lifts of W that share
the terminal X. One cuts a lift of a*wt:, and the other shares a terminal with it.

Lemma 4d.3. Let I route a wire w in the design fQ, and let a be a half-cut for
q. If a respects w weakly, then all cuts associated to a have the same flow in f.

Proof. Let a be a half-cut for 17 at t, and let a and / be cuts associated to a. If a
and 0 are link-homotopic, then they automatically have the same flow, so we may
assume that a "L a-wt:o and / 'L o'*Wt:i. We must prove flow(a, fO) = flow(#, l).
It suffices to prove wind(a,w) wind(p3,w) for all wires w E ft.

Figure 4d-5. Flow across the associated cuts of a half-cut. The simple links
and i lift non-homotopic cuts associated to a half-cut a for the link 77, whose lift
i is link-homotopic to a wire lifting i$. No wire lifting cuts Z, so every wire lifting
that cuts a or 3 also cuts the other, inless it shares a terminal with C5. The latter

*j option is ruled out if a weakly respects the design.

We imitate the proof of Proposition 4d.2. Let S be the sheet of Q, let M be
its blanket, and let p: M --* S be the covering map. Lift a and 17 to a and i" such
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Flow Across Cuts and Half-Cuts Chapter 4

that a(1) = q(t). Find simple links a and / in M from the fringe containing a(O)
to the fringes containing Z(O) and Z(1), respectively, such that Im a U Im 3 U Im
is a web of 3 threads. Then Po aL a and po I=L 0. Let v -# w be a wire of fl.
There are exactly wind(a, v) lifts of v that are cut by 6; because v $ w, none of
these can share a terminal with 4. Also because they cohere with , none are cut
by 4. We conclude that all such lifts are cut by /3. Hence wind(a, v) < wind(o, v).
By symmetry, the opposite inequality holds as well.

To establish a similar formula with Lo in place of v, it suffices to show that no lift
' of w that shares a terminal with q is cut by i. Let 1 E [771 lift w; then Z and Z'

share a terminal. Because a respects w weakly, its associated cut p o 6 also respects
,; weakly. Hence a cutting Y' would imply that 3 could not share a terminal with &.
But 4 does, and q s-t Z. We conclude that & cannot cut Z, and hence F cannot cut
4. Thus wind(a, v) < wind(3, v) even when v = w. By symmetry, this inequality
is actually an equality. 01

Lemma 4d.3 gives evidence that weak respect of a design is a good condition to
require of a half-cut.

More bounds on flow

The technique used to prove Proposition 4d.2 and Lemma 4d.3 is a very pow-
erful one. It compares flows by building a loop of links in a blanket and drawing
correspondences among the wire liftings that cut those links. The following lemma
encapsulates the technique for future use.

Lemma 4d.4. Let - be a simple link in a blanket M, and suppose a 2-p 7.
Every simple link in M that cuts - either cuts some link within a, or contacts a
fringe of M that intersects a but not y.
Proof. We inductively apply the technique of Proposition 4d.2, constructing webs
in the blanket M. Let a,, ... , a,, be the links contained in a. For 1 < i < n, let

F,.... be the fringe of M containing a,(O), and let F, be the fringe containing ai(l).
[ • Then the terminals of j are F0 and F. The lemma says that every simple link in M

that cuts -y either cuts some link ai or else has some fringe F as a terminal where
1 < i < n. To prove this claim, we construct a sequence of simple links K0 , ... , PC,-,
where Km has terminals F,, and F,. At the same time, we prove by induction on m
that every link that cuts y either cuts r,,,, cuts one of the links a,, . . ., a,, or has
one of the fringes F1 , ... , F, as a terminal. Because t,,-, is link-homotopic to a,,

the case m = n - 1 will establish the claim. The basis case is easy: for m = 0 we
let K0 be the simple link -.

Now supposing the induction hypothesis is true for rn - 1, we prove it for m. It
is enough to show that a simple link cutting Kn,_ eith.zr cuts am or K., or else has
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Section 4E The Branches of a Blanket

Figure 4d-6. Flow across a chain of links. The paths i/, are the links of a chain
for . By induction on m, any simple link that cuts 7y either cuts Kin, or cuts one
of the links a1 , ... , a,,, or has one of the fringes F1 , ... , Fm as a terminal.

i ~ F as a terminal. If the fringe Fm, is a terminal of Km~n_, then amt is either trivial or
link-homotopic to Km,-1, so we can simply set ic, , = ,,- 1 . Otherwise let A be the
scrap of M - Im Km,,,-i that contains Fm,, let Pm, E [a,,]L be a simple link in A, and
let 1Cm, be a simple link between Fm and F= in the appropriate scrap of A - Imm ,.

.0 Im Fc,_ mp ,

Then the set

is a web of 3 threads. Because its o ins e ts no fringes (Proposition 3b.8),

fo every link that cuts -c._. must either cut Pm or nCm, or else it must have Fm as a
terminal. To cut Pm, is to cut am. This step completes the induction, and thereby

the proof. 0]

4E. The Branches of a Blanket

To make further progress, we need more information on degenerate links and on the
lifts of a wire that contribute to the flow across a cut. We obtain the latter by study-
ing the relation of respect between cuts and designs, presented in Definition 4e..
below, which is similar to but more powerful than the relation of weak respect de-

fined in Section 4C (Definition 4c.6). We show that every simple cut respects every
design, and show that when a simple cut makes a necessary crossing with a wire in a

l design, the resulting semisim pie half-cuts respect that design. Most of the cuts and
half-cuts at issue in a particular design turn out to be simple or semisimple, and
hence respect the design. As a by-product of this study, we discover two important
correlates of nondegeneracy. First, semisimple half-cuts are nondegenerate. Second,
although simple cuts can be degenerate, the ones that are have zero flow.

Degeneracy and respect are closely related: both can be best understood in
terms of a division of the fringes of a blanket into branches. A design partitions

- 135 -

bo wich i



Flow Across Cuts and Half-Cuts Chapter 4

the fringes of a blanket into branches just as it partitions the fringes of a sheet into
articles. If fl is a design on a sheet S, the articles of fl are the components of the set
X = Bd S U Uweg Im w. Let M be the blanket of S, with covering map p: M --+ S.
The branches of the design f) are the components of the set p-(X) in M. Two
different fringes in M, say A and B, are in the same branch if and only if for some
wire w in fl, there is a sequence of fringes A = F, F1 , ... , F. = B such that for
1 < i < n, some lift of w has terminals F-I and F. We use the branches of a design
to classify the lifts of a wire, and to identify degenerate cuts.

Degeneracy

A degenerate cut in a design 11 is one with a lifting whose endpoints fall in the
same branch of fl. For if a cut a is degenerate in the design fl, then a has a chain r
in the set X. Hence by Proposition 2b.4, any lifting 2 of a has a path-homotopic
lifting F of r which lies in p-(X). Conversely, if a is any lift of o, whose endpoints
lie in the same branch, then there is path 7 in p-(X) between the endpoints of S.
(For some wire w E fl, it is the concatenation of subpaths of lifts of W with paths
along fringes.) By Lemma 2a.5, there is a path homotopy F between a and F, and
the projection of F is a path homotopy between a and a path r: I --+ X.

This characterization of degeneracy clarifies several facts about degenerate cuts.
First, a cut that is degenerate in one design is also degenerate in any embedding of
that design. Second, if one associated cut of a subcut is degenerate, then all are.
Third, the concatenation of degenerate subcuts is degenerate.

Strong respect

For a cut to respect a design strongly means, in essence, that each branch of the
design contributes at most one necessary crossing to the flow across the cut.

Definition 4e.1. Let £2 be a design on a sheet S. A cut X of S respects f)
(strongly) if whenever

(a) w is a wire in fl,
* (b) Z and ZY are two lifts of w in the same branch of £2, and

(c) % is a lift of X that cuts Z,
the terminals of ZY lie within the same side of j.

The definition of strong respect (4e.1) differs from that of weak respect (4c.6)
only in part (b), where the requirement that w and w' lie in the same branch of

,O f) has replaced the weaker condition that w and w' share a terminal. Like weak
respect, strong respect is invariant under link homotopy.

The significance of Definition 4e. 1 will become increasingly clear in later sections.
From a technical point of view, it is central to the study of the design model. In the
remainder of this section, we give sufficient conditions for a cut to respect a design.

~- 136 -

04-



Section 4E The Branches of a Blanket

Figure 4e-1. Weak respect but not strong respect. The pretzel-shaped cut at left
respects the wire shown in grey weakly but not strongly. At right are the relevant
liftings. The three wire liftings (grey) lie in the same branch of the design. Two
of them cut the cut lifting (thin black path), but they do not share a terminal.

Figure 4e-1 shows a nearly minimal example of a cut that weakly respects a
design without strongly respecting it. As the next result shows, in any such example
the cut must have self-intersections.

Proposition 4e.2. Simple cuts respect all designs.

Proof. Let X be a simple cut of a sheet S, and let w be a wire in S. Suppose
and Z are lifts of X and w that cut one another. For n > 1, we say n-respects
w if whenever aOn are distinct lifts of w starting with Z such that for 1 < i < n,
the links ai-I and ai share a terminal, the terminals of an lie on the same side of
j. Then 1-respect is the same as weak respect, and strong respect is n-respect for
all n. We prove by induction on n that X n-respects w. The basis case is established
by Lemma 4c.7; it says that X respects f1 weakly because X is simple.

Figure 4e-2. Why simple cuts respect all
designs strongly. In the situation depicted,
a simple cut X with lifting does not n-
respect a wire w. (Here n - 3.) A branch
of w includes liftings ao, ... , a,, of which
aO cuts j, and an cuts or shares a terminal
with j. The link V is to a1 as is to a0 .

? X Where can its terminals lie? Wherever 5e
goes it contradicts the induction hypothesis
that X (n - 1)-respects w.

For the induction step, where n > 2, we suppose that an either cuts or shares a
terminal with j, and derive a contradiction. By the induction hypothesis, none of
the links a, for i < n intersects . Furthermore, the lifts of w are all disjoint since
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w is simple. Hence j and a,, ... , a,, form a web of n - 1 threads (if a,, cuts X-) or n
threads (if it does not), as shown in Figure 4e-2. Let -y be a simple link whose image
is the thread of this web that intersects Im k. Let h be a covering transformation
that takes ao to a,, and put j' = h o k. Then j' cuts a,, because cuts ao.

Consider how k leaves the inside of the web. One terminal of 5' lies on the
other side of a, from 5. Regarding the position of the other terminal, there are
three possioilities: it may be a terminal of ai for some i 3 1, or k' may cut ai for
some i 5 1, or ' may cut -f. Since 5' does not cut , as these are lifts of a simple
link, one or two applications of Lemma 4c.1 show that if V cuts y1, it also cuts ai
where i is either 0 or n. In each case, apply the induction hypothesis to the lift 5'
of X, and the lifts a, and ai of w. Because cuts a1 , and X k-respects w where
k = ji - 11, the link ai cannot cut j0 or share a terminal with it. This contradiction
means that X n-respects w, completing the induction. 0

One interesting consequence of Proposition 4e.2 is the following.

*Corollary 4e.3. Degenerate simple cuts have zero flow.

Proof. More precisely, if X is a simple cut that is degenerate in a design 11, then
flow(x, 11) = 0. For if X is degenerate in fl, then any lift j of X is path-homotopic
to a path 3 in a single branch B of fl. If the article C that is the projection of B is
a single fringe, then so is B, which makes X trivial. In this case no simple link cuts

, and so flow(x, 11) = 0. So suppose C contains a wire w E S1. By Lemma 4d.4, no
lift of a wire in fl can cut j unless it intersects a fringe of P or cuts a link in '6. In
either case it intersects B, and is therefore part of B, and hence is a lift of w. But
the terminals of k lie in B, and by Proposition 4e.2, X respects W. Therefore no lift
of w in B cuts . We conclude that no wire in fl has a lifting that cuts k, and so
flow(x, fl) = 0. E3

Half-cuts and mid-cuts

As one might expect, we say that a half-cut or mid-cut respects a design if and
only if its associated cuts do. Because respect is invariant under link homotopy, half-
cuts and mid-cuts that are akin respect the same designs. Our next result gives us
a tool for constructing respectful subcuts from respectful cuts. With Lemma 4e.4
and Proposition 4e.2 together, we have enough leverage to prove that almost any
useful subcut respects its design.

,O,'aLemma 4e.4. Let 11 be a design on the sheet S, let w be a routing of a wire

in 11, and let X be a cut of S that respects Q7. If (s, t) is a necessary crossing of X
byw , then for e E {0, 1}, every cut in [Xo: * Wt:e]L respects f.

Proof. Let M be the blanket of S, with covering map p: M -+ S. Because respect
is invariant under link homotopy, no generality is lost by assuming that w E f. So
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Section 4E The Branches of a Blanket

let - and Z be lifts of X and w such that (s) = Z(t), and let # be any simple link

in [O:o*Ct:e]L. Also let v be any wire in fl. It suffices to show that for any lift of v

that cuts 0, every other lift of v in the same branch has its terminals in the same

scrap of g3.

Figure 4e-3. Construction of respectful subcuts. The lift of X cuts the lift C
of the link w, and X respects the design. No wire lifting cuts C, so any wire lifting
that cuts # also cuts k. Of any two wire liftings in the same branch, at most one
can cut 3. We show that the other cannot even share a terminal with /.

I claim that if a lift i; of v cuts 8, then it also cuts j. The link j cuts Z
because the crossing (., t) is necessary. The link 9 does not cut Z, because their
projections to S form a subdesign of f). In other words, ii coheres with Z. Now
apply Lemma 4c.1: because £5 cuts fl but not 0, it must cut j.

Let ii and ' be two lifts of v in the same branch of fl, and suppose 9 cuts 8.
Then Z5 cuts k, and because X respects fl, the other lift ' neither cuts j nor shares
a terminal with it. In particular, ' does not cut #, and it does not share a terminal
with /(0), because P(0) lies on a terminal of j. One other possibility remains: that

v' might share a terminal with /3(1). But 6(1) lies on a terminal of Z, so if ' shares
this terminal, then C and 9 lie in the same branch of 11. Both these links cut j,
however, and since x respects fl, they cannot lie in the same branch. We conclude
that if U cuts #, then the terminals of 9' lie on the same side of fl. Therefore 8
respects fl. D

To put Lemma 4e.4 into practice, we define an important class of half-cuts to
which it applies.

Definition 4e.5. Let w route a wire in the design fl. A half-cut a for a link w
is semisimple in il if there is a simple cut X and a necessary crossing (c, t) of X by
w such that XO:c, as a half-cut for w at t, is akin to a.

One could extend Definition 4e.5, and the following proposition as well, to mid-
cuts. A mid-cut r between links v and w would be semisimple if there were a simple

cut X and necessary crossings (a, s) and (b, t) of X by v and w, respectively, such
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that X.:b, as a mid-cut between v at s and w at t, was akin to r. As natural as the
generalization is, I have no use for it.

Proposition 4e.6. Semisimple half-cuts are nondegenerate and respectful.

Proof. Let a be a semisimple half-cut in the design 0 . The claim is that a respects
fQ and is nondegenerate in 0. Let X be the simple cut whose half-cut Xo:c is akin to a.
Then x respects 11 by Proposition 4e.2, and by Lemma 4e.4, every cut associated
to Xo:c respects 0l. Thus Xo:, respects fl. Since half-cuts that are akin respect the
same designs, a also respects fl.

To see that a, or equivalently X0:c, is nondegenerate, let j and v be lifts of
satisfying i(c) = Z(t). If Xo:c were degenerate, then the endpoints of Xo:c * Wt:l

would lie in the same branch of fl. And since w routes a wire v in fl, this branch
would include a lifting i; E [P]L cutting , as well as the fringe containing k(O). But
> respects fl, so this cannot happen. 1

4F. Safety of Cuts and Half-Cuts

So far we have only considered the topology of designs, using concepts such as
necessary crossings and the flows across cuts. Now we mix in some geometry: the
arc lengths and capacities of cuts. The result is a powerful set of lemmas concerning
the safety of cuts. For example, Corollary 4f.5 shows that an unsafe, major, simple
cut gives rise to an unsafe, major, straight cut, and therefore every major simple
cut in a safe design is safe..

The technique we use generalizes that discovered by Cole and Siegel [6] and
independently by Leiserson and the author. It involves shrinking the cut to its
elastic chain, and relating the flow and capacity of the cut to the flows and capacities
of the links in the elastic chain. If the cut respects its design, the flow across the
chain can be smaller than the flow across the cut only by the widths of the wires

* whose terminals touch the middle of the chain. But in going from the cut to the
chain, the total capacity is reduced by the width of every fringe that touches the
middle of the chain. Since wires are no wider than their terminals, the total capacity
decreases by at least as much as the total flow. Hence if the cut was unsafe, one of
the links in the chain is unsafe as well. Of course, I have glossed over some technical
issues, such as the need to ignore minor cuts.

Redefinition of safety

In order to accommodate half-cuts as well as cuts, we redefine safety in terms

of flow. Let 0 be any cut or half-cut. The margin of 0 in a design Sl is the capacity
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of 0 minus the flow across 0:

margin(O, fl) = cap(O, fl) - fiow(O, Q).

The terminology is meant to suggest 'margin of safety'. We say 0 is unsafe in the
design fl if and only if margin(O, 12) is negative. A cut whose margin is 0 is called
marginal (or "marginally safe").

Chains of links

Proposition 4f.1, which forms the basis for the results of this section, relates the
flow across a cut or half-cut to the flow across a chain of links and half-links. Recall
from Chapter 3 that a chain for a path in a manifold is any homotopic path, and
from Section 3D that every path in a sheet has a unique elastic chain.

A chain for a cut or half-cut consists of major links and gaps, which are defined
as follows. Let a be a chain for a cut or half-cut a in a design fl. If a is a half-
cut, then a ends with a half-link r. Aside from this, a consists of major links a1 ,
... , a, interspersed with minor links and paths along fringes. The major links of
the chain a are the paths ai, plus r if -r is nondegenerate. (If r is degenerate, we
say the chain is degenerate.) The portions of a between its major links are called
the gaps in a. Each gap -t can intersect at most one article C of Q. For a gap
consists of empty and degenerate links, and none of these connect different articles
of a design. The width of the gap -y is defined to be the width of the wire in the
article C, or zero if C includes no wire.

The flow across a chain is just the sum of the flows across its major links, but the
capacity of a chain is slightly more complex. We denote by gaps(a) the sum of the
widths of the gaps in a chain a. If a is a chain for X, the quantity gaps(a) represents
the amount of wiring that might contribute to the flow across X but escape detection
by any link of X. The capacity of a chain is the sum of the capacities of its major
links, plus the sum of the widths of its gaps.

The flow across a chain

We use three tools to derive sufficient conditions for the existence of an unsafe
or marginal link in a chain. One is Proposition 4f.1, coming up, which bounds from
below the flow across a chain. Another is Lemma 4f.2, which gives conditions for
the existence of a link in the chain. The third is Lemma 4f.3, which bounds from
above the capacity of a chain.

Proposition 4f.1. Let a be a cut or half-cut that respects the design S1. If a
is a chain of straight links for a, then

flow(a, fl) > flow(a, Q) - gaps(a). (4-3)
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Proof. The first step is to reduce the case of a half-cut to that of a cut. If a is a
cut, put 7 = a and x = a. Now suppose a is a half-cut for a wire w at t. Let X be a
cut in [a' *Wt:i]p, and let j7 be the path a*wt:,. Then 7 is a chain for X. The cut X
respects l because a respects Q, and X is associated to a. By Proposition 4b.3 and
the definition of the flow across a half-cut, we have flow(x, Ql) = flow(O, Q). We
also have flow(q, Q) = flow(a, Q), because their nondegenerate links correspond.
(Empty links are irrelevant because they have zero flow.) In other words, the only
way 7 and a differ is that where a has a half-link, 77 has an associated cut for that
half-link. One is degenerate if and only if the other is degenerate. Hence it suffices

to prove

flow(r, fQ) flow(x, Q) - gaps(a). (4-4)

Figure 4f-1. Bounding the flow across a
chain. This figure depicts liftings of cer-

) ],(1). tain paths and chains involved in Proposi-
i(1) tion 4f.1. Here a is a half-cut for w. Its

chain a reaches only to a(1), so we replace
a by its associated cut X, and a by a chain 77

for X. Though the links of a are straight, the
final link of 77 need not be.

.

We apply Lemma 4d.4 to lifts of X and 7 for each wire v in 11. Using Propo-
sition 2b.4, let and q be path-homotopic lifts of X and q?, respectively. Let qj,
..., ,17 be the links of q7, and let qi, ... , qTi be the corresponding subpaths of q.

By Lemma 4d.4, any lift of v that cuts x either cuts q, for some i, or else has as
terminal a fringe that intersects q" but not j. Let B denote the branch of v that
contains this fringe. Because X respects Q, the branch B contains at most one lift
of iY that cuts j, and B does not include either terminal of j.

The contribution of B to flow(x, l) can be charged to a gap in a of width
width(v) in such a way that no gap is charged twice. Let M be the blanket, and
let a be the lift of a to M such that &(0) = q'(0) = k(0). Pick x E (0, 1) such
that a(x) E B in Bd M, and let [s, tj be the maximal interval containing x such
that - = o,:t consists of minor links interspersed with paths along fringes. If a
ends with a degenerate half-cut, this may be included in y. The only fringes that -Y
touches are those in the article of S1 that includes Im v. Let 5 be the subpath of i"
corresponding to -.
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To show that -' is a gap of a, it is enough to prove a # 0 and t # 1. The

links (and possible terminating half-link) of -f are straight and minor, and since the

terminals of v are convex, each link is nonempty and therefore degenerate instead.

All the fringes that intersect j are part of the same branch B. So if s = 0, then B
contains 5(0) = j(0). Or if t = 1, then the final link or half-link of a is degenerate,
and B contains (1). But B includes neither terminal of , so s > 0 and t < 1.
Thus -y is a gap of a, and its width is width(v). We charge the contribution of B
to -. Because all the fringes that 5 touches are part of B, and B contains at most
one lift of U that cuts k, the gap -y is charged only once.

The upshot of this analysis is that the difference between the flow across X and

the flows across the links 77i is accounted for by the widths of the gaps in a. In
symbols,

flow(x,rf) - flow(qbfl) : gaps(a).
imi

To prove inequality (4-5), it remains to identify flow(r/, 11), the sum of the flows
across the major links of 77, with Z"=1 flow(i1,, Ol). In other words, we must show that
the minor links of ir contribute nothing to the flow across X. Certainly the empty
ones contribute nothing, because their flow is zero in 0?. The straight degenerate

links, also, have zero flow in 1 by Lemma 4e.3. The remaining case is the final link
17, of r, which can be nonsimple if a is a half-cut. If q,., is degenerate, then the
endpoints of ijr lie in the same branch T of fl. Thus , is path-homotopic to a path
in a single branch T of f0, and hence it cannot cut links in any other branch. The
branch T contains a terminal of , because 'm(1) and i(1) lie on the same fringe.
Because X respects 0Z, no link in T that lifts a wire in fl can cut j. Therefore no
lift of a wire in fl can cut both il,, and 5'. In other words, j7,,, contributes nothing
to the flow across X. 1

Elastic chains

As mentioned before, our strategy is to reduce a major cut or nondegenerate
half-cut to the major links in its elastic chain. The next lemma ensures that some
major link always remains. It uses the fact that all the links and half-links in an
elastic chain are straight (Lemma 3d.5).

Lemma 4f.2. The elastic chain for a major cut or a nondegenerate half-cut
includes at least one major link.

Proof. First consider the case of a cut. Let X be a major cut in the design ft, and
let a be the elastic chain for X. If the endpoints of X lie in different articles of fl,
then a must contain a link that passes between two different articles, and this link
is major. So we assume that all the links in a have their endpoints in the same
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article. Suppose first that this article contains no wire of fl. Then gaps(a) = 0,
but since X is nonempty, its flow is positive. Hence by Proposition 4f.1, the flows
across the major links of a sum to a positive quantity, and therefore a must have a
major link. Now suppose the article contains a wire w of fl. Using Proposition 2b.4,
lift X and a to path-homotopic paths 5 and 6. The endpoints of j lie in different
branches of w because X is nondegenerate. Hence & contains a link that passes
between two branches of w, and consequently a has a nondegenerate link 3. Since

13 is straight and terminals are convex, 3 has two terminals. Thus 3 is a nonempty,
nondegenerate link of a.

Now consider the case of a half-cut. Let a be a nondegenerate half-cut for a link
w at t, and let 77 be the elastic chain for a. Let X be a cut in (a *wt:I]p, and let a be
the chain 7*wt:1 for X. The cut X is nondegenerate in fl because a is nondegenerate
in Q and X is associated to a. As before, we may assume that links of at all lie in
the same article of 0. This article contains a wire in fl, of which W is a route. Let j
and 5 be path-homotopic lifts of X and a. Then the endpoints of lie in different
branches of w. Hence & contains a link that passes between two branches of w, and
consequently a has a nondegenerate link 3. If f3 is part of , then 3 is straight,
and hence nonempty as shown above. Otherwise 3 is an associated cut of the final
half-cut in r7. Since 3 is nondegenerate, this half-cut is nondegenerate, and again 77
includes a major link. D

The most important fact about elastic chains is that they have minimal euclidean
arc length, and minimal arc length in all other norms as well (Corollary 3d.8).
Combined with the following lemma, this fact implies that the capacity of a cut or
half-cut is no smaller than the capacity of its elastic chain.

Lemma 4.3. The elastic chain 0 of a major cut or nondegenerate half-cut a

satisfies cap(O) - 11011 <_ cap(a) - 1a'll, and the inequality is strict if 0 is degenerate.

Proof. We assume, of course, that the widths of wires and fringes are specified by
some design fl. Let 01, ... , 0,, be the major links of 0, where n > 1 by Lemma 4f.2.

For 1 < i < n the points 0i(1) and 0i+1(0) lie in the same article C of f0. Let Co
denote the article containing 01(0), and let Cn be the article containing 0,(1). For

1 <i < n, let a, be the width of the detail containing 0,(O), and let bi be the width
of the detail containing 0(1). Also put wi equal the width of the wire in the article
C,, if any, and otherwise put w, = 0. Then = w, = gaps(O), and hence by the
definition of the capacity of 0 we have

n n-1

cap(0) = E cap(0,) + w1. (4-5)
i=1 i=I

No wire is wider than either of its terminals, and therefore wi < a, and wi _ bi for
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Figure 4f-2. A simple cut and its elastic
....... chain. Here a is a cut in a design whose

wires are shown in grey. The elastic chain 0
12 " " for a has three minor links (thin black lines)

,,-,- and four major links 01, 0, (thick black
lines).

each i.
Now we evaluate inequality (4-3) using the definition of capacity for cuts:

n n-1

cap(O) 10 (eill - ai/2 - bi/2) + Wi
i---- i=l

< ( leIv) - a/2 - b,/2

_ lell - au/2 - b,,2. (4-6)

The final inequality holds because the paths Oi are disjoint subpaths of 0, and hence
is strict if 0 contains anything but major links. In particular, it is strict if 0 is
degenerate. Comparing inequality (4-6) to cap(a), which is 11a11 - al/2 - bn/2, we
get the inequality

cap(O) - 11011 -< -aI2 - b/2 < cap(a!) - lall,

with strictness if 0 is degenerate. 0

Applications

There are three main applications of Proposition 4f.1 and Lemmas 4f.2 and 4f.3.
One concerns unsafe cuts, one concerns unsafe half-cuts, and the third concerns
half-cuts of margin zero. The first two are given here; the third is discussed in
Section 5B. All the applications start with a cut or half-cut, compare the flow and
capacity of an elastic chain, and show that one of the links in that chain must have
low margin.

Lemma 4L4. Let X be a major simple cut in a design Q. There is a major
straight cut /3 satisfying margin(o3, f) : margin(x, fl)/n for some n > 0.

Proof. Let a be the elastic chain for X. By Lemma 4f.3 and Corollary 3d.8, the
chain a satisfies cap(a) < cap(X). Let a,, ... , a,, be the major links of a. Because
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X is simple, it respects 1l, by Proposition 4e.2. Hence Proposition 4f.1 applies to x,
a, and 0. The result is

Vn
"flow(a,, 9) 2! flow(x, 0) - gaps(a).

The definition of cap(a) and the fact that cap(a) <_ cap(x) imply

cap(a,, 0) :_ cap(x) - gaps(a).
n m---1

* Subtracting the previous inequality from this one shows that F2= margin(cr, f?) _
margin(X, 0). Because n > 1, by Lemma 4f.2, there must be some link /3 among

the a, such that margin(ft, f0) 5 margin(X, O)/n. This link 63 is a major straight
cut.O

If one applies Lemma 4f.4 to a major simple cut with negative margin, the
major straight cut it produces has negative margin, and is therefore unsafe. In a
safe design, this cannot happen.

Corollary 4f.5. All major simple cuts in a safe design are safe. E3

The second application concerns half-cuts. Its proof is very similar to that of
Lemma 4f.4, except for some additional concern about degeneracy.

Lemma 4.6. Let w route a wire in a safe design fl. If w has an unsafe, non-
degenerate, simple half-cut that respects f?, then w has an unsafe, nondegenerate,

straight half-cut.

Proof. Let a be the unsafe, nondegenerate, simple half-cut for w, and let a be the
unique elastic chain for or. Let a,, ... , a,, be the major links of a. Lemma 4f.2 and

Corollary 3d.8 imply cap(a) < cap(o), and Lemma 3d.5 implies that the links of a
are straight. Because a respects fl, Proposition 4f.1 shows that

Zflow(ai, 1) > flow(o, fR) - gaps(a).

By the definition of cap(a) and the fact that cap(a) < cap(a), we also have

Z cap(a,, ?) !5 cap(ar)- gaps(a).
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Subtracting the previous inequality from this one shows that

margin(*,, 02) :_ margin(a, 0). (4-7)

The right-hand side of (4-7) is negative by assumption. Since Q is safe, every
major straight cut in fl has nonnegative margin. Hence not every ai can be a
link; an must be a nondegenerate half-cut r for w. Then inequality (4-7) implies p
margin(r, Q2) <5 margin(a, n)- ~ margin(ati, (1), which means margin(r, 11) < 0.
Therefore r is an unsafe, nondegenerate, straight half-cut for w.
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Chapter 5

Routing a Safe Design

The most natural way to prove that a safe design has a proper embedding is to
construct one. And, in fact, all the methods I have considered for proving the de-
sign routability theorem are essentially constructive. But the construction can tend
toward either of two extremes. It might be a deterministic algorithm that builds
the embedding step by step, maintaining some invariant that ensures that the final
embedding is proper. Or it might be a mathematical description that distinguishes
a certain design; the description could involve limits and other infinitary "construc-
tors". One would then need to prove the existence of the limits, and deduce from
the description that the resulting design is proper.

Many methods for proving the design and sketch routability theorems succeed
without being particularly enlightening. One algorithmic approach, for example,
is to begin with rubber bands and slowly move them apart, keeping them taut
and bending them as necessary, until they reach their natural width. This process
gives rise to a constructive proof of the sketch routability theorem and a routing
algorithm that runs in time 0(n 7 ) or so [331. The mathematical approach, also,
can probably be made to work. One can prove theorems similar to the sketch
routability theorem in the grid-based wiring model, as Cole and Siegel claimed
in [6]. Letting the grid size approach zero and taking the limit of embeddings with
minimal wire length, one can probably obtain proper embeddings for safe sketches
in other wiring models as well. (There are some difficult technical issues concerning
self-avoidance.) But again, this approach gives little guidance for developing an
efficient routing algorithm and proving it correct.

My construction, presented in this chapter, is a compromise that lies closer to
the mathematical extreme. Given a safe design, we first construct an evasive route
for each wire. We then prove that each wire in the design has a minimum-length
evasive route. (Here a limiting process comes in, via Proposition 2c.8.) Finally, we
characterize these routes in sufficient detail to show that they form a proper design.
Thus we prove the hard direction of the design routability theorem, and with some
extra work in Chapter 6, we get the design routing theorem as well. But the real
advantage of this approach shows up in Chapter 7: the information it provides
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about ideal routes allows us to develop efficient algorithms for constructing them.

.1 Inspiration

The idea of using minimum-length evasive routes for single-layer routing first
appeared in a paper by Tompa [52], who considers river routing across a channel.
I have adapted his construction to the case of a multiply connected routing region,
but the outline of the proof is the same. Unfortunately, the technical difficulties of
working in a blanket, rather than in the plane, make my proof about fifteen times
longer than his.

A simplified problem

What follows is a brief overview of Tompa's construction. I have simplified it by
-using a piecewise linear wiring norm rather than the euclidean norm used in [52].

Suppose one wishes to connect terminals a,, ... , a,, on the bottom of a rectangular
* channel to terminals bl, ... , b,, on the top, using "wires" of unit width. Assume

these terminals are numbered from left to right. We argue that the conditions

Ula, - aiI li-ijl
iIla, -bill li -jl 1 1 < i~j < n(,

-- lib, -bill > i  - A

are necessary and sufficient for the channel to be routable by wires that remain
at least one unit apart. We can interpret these inequalities as saying that certain
nov 4egenerate cuts are safe. If ci E {ai, bi} and ci E {ai, bi}, then the "capacity" of
the "cut" from c to cj is 114c - cjl-1; the "flow" across this cut is rnax{0, li - jI-1};

* and if i = j, then the cut from c to ci is "degenerate". See Figure 5-1(i).
Suppose that one of the inequalities in (*) fails to hold. Then for some c and cj,

with i -6 j, the line segment X from cj to ci has length less than Ii - j. No matter
how the wires are routed, each of the wires whose index lies between i and j must
cross X. Counting also the wires i and j, which intersect the endpoints of X, there
are li - jI + 1 different wire3 that must intersect X. They cannot do so and still
remain one unit apart. Therefore condition (*) is necessary.

To show that condition (*) is sufficient, we route the wires assuming that it
holds. From the perspective of wire i, each terminal cj E {a,, bj} for j 3 i presents
a barrier for wire i. The barrier surrounding ci is the set { x: lz - aII < li - jl }.
We call this a left barrier if j < i, and a right barrier if j > i. Part (ii) of Figure 5-1
suggests why left and right barriers do not intersect. If the barrier around ci with
j < i intersected the barrier around ck with k > i, there would be a point x such
that IIx - cj < ji- j and JrX- ckI1 < li - kj. Then the triangle inequality would
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~Figure 5- 1. A simplified routing problem. The chief ideas behind the routing of

safe designs are amply illustrated by the much simpler problem of river routing in
a simply connected region. This problem supports analogues of the design rout-
ability and routing theorems. Under natural definitions of safety and degeneracy
for cuts, shown in part (i), the terminals of a channel can be connected by wires

of unit width if and only if every nondegenerate cut is safe. Furthermore, if the
4- channel can be routed, one can route it using minimum-length evasive wires, as

shown in part (iii). An evasive wire is one that avoids the barriers presented by the

terminals of other wires (part (iv)). The remaining parts illustrate the argument

that the minimum-length evasive wires exist and are sufficiently separated.
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imply Ilci - c1I1 < IJ - kJ, contradicting (*). Hence there is a path from aj to bi
that avoids both its left and right barriers. Such a path is called an evasive route
for wire i. We route wire i by choosing the minimum-length evasive path w, from a,
to b,, as shown in part (iii) of Figure 5-1. Part (iv) of that figure illustrates the
barriers for a particular wire.

Now for the interesting part: we prove, in three steps, that the minimum-length
evasive routes wi stay one unit apart. The first step appeals to the reader's geometric
intuition, although a rigorous proof could be provided. Because the wiring norm is
piecewise linear, the barriers are polygonal. The first claim is that the routes are
piecewise straight. We also claim that wherever w, has a joint t, the point wi(t) lies
on the frontier of a barrier around some terminal ck, and wi turns toward ck at t.

The second step shows that none of the routes cross over. For if wi and wi cross
over, then they form a polygon as shown in Figure 5-1(v). The portion of wi in this
polygon lies on the opposite side of wj from ai and bi. Similarly, the portion of wi
in this polygon lies on the opposite side of wi from ai and bj. Like all polygons, this
one has three or more internal angles of measure less than r. Two of these can lie
at the points where wi and wi intersect, but at the third angle x one of the routes,
say w , turns toward the inside of the polygon. Let ck be the terminal whose barrier
wi bends around at x. Then the line segment from x to ck lies within this barrier,
and its length is :i - ki. This line segment intersects wj. Moreover, the terminals
of wi lie on the opposite side of wi from cl,. Therefore Ij - kJ is greater than I{ - kJ,
and so wi comes closer than IJ - kI units to ck. But this means wi enters the barrier
presented to it by ck.

The third step shows that the routes wi stay at least one unit apart. Suppose wi
comes within d < 1 units of wi, as shown in Figure 5-1(vi). Then either a terminal
of one comes within d units of the other, contradicting evasiveness, or else there is a
point x at which one route, say wi, lies within d units of the other, but turns away
from it. Let ck be the terminal whose barrier wi bends around at x. Then wi turns
toward Ck at z, and since w3 does not cross over wi, it follows that ck lies on the
opposite side of wi from the terminals of wi. Hence the barrier for wi around ck has
radius at least Ji - kJ + 1. We have Vz - c1ll = Ji - kJ, and hence by the triangle
inequality for norms, wi comes within Ii - kJ + d units of Ck. Again Wi enters the
barrier presented to it by ck. We conclude that the routes wi actually do stay one
unit apart.

Outline of the construction

Many ideas from river routing in a channel carry over to the design routing
problem. The first insight that applies is this: a feasible wire must stay far enough
away from the fringes, other than its terminals, to allow the other wires to be routed.
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We express this constraint in our model by saying that a route of a wire w is evasive
in a design fl E w if every nontrivial straight half-cut for that route is safe in 1.
Evasiveness alone does not guarantee feasibility, however. An evasive link can be
divisive, and it can have self-intersections. Moreover, it might not leave enough
space for wires to pass between two different portions of itself. But if one chooses a
canonical, evasive route of minimum length, these problems go away; no two parts
of the route are close together except where it is necessary. A route a of a wire w in
a safe design Q is called ideal for fl if a is canonical, evasive in !Q, and has minimum
length among all routes of w that are evasive in 0.

To prove that the ideal routes form a design, we analyze the points at which they
turn. Intuitively, wherever an ideal link has a joint, it is being pushed away from a
fringe by the evasiveness condition. As we show in Section 5B, there is a marginally
safe half-cut from that fringe to the joint, and it lies interior to the angle made by
the link at that joint. (Ideal links are piecewise straight.) From this result we can
deduce many properties of the ideal routes. For example, if the ideal routes of two
wires were to cross over, they would form a loop, and one of the two links would turn
toward the inside of the loop. But then the marginally safe half-cut would contain
an unsafe nontrivial half-cut for the other link, contradicting the evasiveness of that
link. Therefore the ideal routes do not cross. A similar argument shows that they
have no self-intersections, and are actually wires.

Furthermore, ideal wires are sufficiently separated. For suppose that two ideal
wires were to come closer than the mean of their widths, causing their extents to
overlap. Then either their terminals would be too close, or else one wire would
turn away from the other at a point where they were close. Concatenating the
marginally safe half-cut to that turning point with a short straight path to the
other wire yields an unsafe, nondegenerate, bent half-cut for the second ideal wire,
and thus by Lemma 4f.6, an unsafe, nondegenerate (and hence nontrivial), straight
half-cut. Again, this would contradict the evasiveness of the second wire. If one
carefully applies this argument to different parts of the same wire, one can also
show that ideal wires are self-avoiding. These are the main steps in the proof that
the ideal routes form a proper design.

5A. Construction of Ideal Routes

The result of this section is quite simple: every wire in a safe sketch has an ideal
route. We prove this result in two steps. Given a wire in a safe sketch, we first
attempt to construct an evasive route for it. If this construction were to fail, we
show, the sketch could not be safe. Then we prove that the family of evasive routes
for the wire has a minimum-length, canonical element: an ideal route.
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Section 5A Construction of Ideal Routes

In my initial attempts to prove a routability theorem, I tried to construct evasive
routes of wires by pushing the wires away from the fringes from which they had
unsafe straight half-cuts. I hoped to show that if the process failed to converge,
then the wire had straight, unsafe, nontrivial half-cuts pushing it from both sides,
and these half-cuts combined to form an unsafe, bent, major cut. By a result like
Corollary 4f.5, the existence of this cut would contradict the safety of the design.
These attempts failed, partly due to the difficulty of defining the "sides" of a wire
in the plane. But in a blanket, where the sides of a simple link are well defined,
the idea works. For every wire in a safe sketch we identify left and right forbidden
zones in the blanket, and show that they do not intersect. Further maneuvering
shows that the wire has an evasive route, which in turn yields an ideal route.

Forbidden zones

The blanket provides us with a spatial characterization of evasiveness. Given
a wire w and a lifting 5 of that wire, we identify two forbidden zones, one to the
left of and one to the right. A route of w need only have a lifting in [P]L that
avoids these zones in order to be evasive. It follows that w has an evasive route if
the forbidden zones for i do not separate the terminals of 5.

Definition 5a.1. Let S1 be a design on a sheet S, and let p: M - S be the
covering map. Let Z be a lift of a wire w E fl. A straight half-link a in M is
forbidden to if for some link iU E [W]L the path p o S is an unsafe, nontrivial
half-cut for p o U. The left-hand (right-hand) forbidden zone for Z is the set
of all endpoints a(1) of the forbidden half-links a for Z with a(0) E left(c$) (or

' a;(0) E right(Z)).

The forbidden zones for Z depend only on its link-homotopy class, or equiva-
lently, its terminals. The choice of the link Z is also irrelevant, provided that it
passes through 5(1). This point will be clarified in Lemma 5a.2.

Requiring that p o a be nontrivial is equivalent to requiring that &(0) not lie
on a terminal of Z. Therefore every forbidden half-link 2 for a satisfies either
a(O) E left(Zi) or a(0) E right(Z), and hence contributes to one of the forbidden
zones for Z. Conversely, every sufficiently short straight half-link a is forbidden
unless it shares a terminal with &5. For if 113;1 < width(w)/2, then then cap(poa) < 0,
and consequently p o a is unsafe. Therefore every point sufficiently close to a fringe
of M that is not a terminal of Z belongs to a forbidden zone of .

Connection with evasiveness

The first consequence of Definition 5a.1 is that one can find an evasive route of
w by finding a link that is homotopic to and avoids its forbidden zones.
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Lemma 5a.2. Let w be a wire with lift C. The projection of a link W E [L]L is
evasive if and only if "' avoids the forbidden zones of &.

Proof. Let p denote the covering map. First we tackle the "if" direction. Suppose
that p o " is not evasive; let a be an unsafe, straight, nontrivial half-cut for ;Y at t.
Let 2 be a lift of a with a(1) = W(t). Then F is a forbidden half-link for Z (take
= p), and hence 3(1) = W(t) lies in a forbidden zone of j.

Now we prove the "only if" direction. If W enters a forbidden zone of Z, then we
have a(1) = W(r) for some forbidden half-link a and some point r E (0, 1). Hence
for some link i" E [IL and some point t E I, the path p o a is an unsafe, straight,
nontrivial half-cut for p o 9 at t. But the half-cuts p o a for p o W at r, and p o a for
po " at t, are akin (Definition 4d.1); they have the same flow, and neither is trivial.
And obviously they have the same capacity. Therefore p o F is an unsafe, straight,
nontrivial half-cut for p o;Y at r, and p o W" is not evasive. 0

Next we show that the forbidden zones for a link do not intersect. The con-
* I struction is illustrated in Figure 5a-1.

100

Figure 5a-1. In a safe design, forbidden zones are disjoint. Here Z lifts a wire .
If its forbidden zones intersect, some point z (small circle) is touched by forbidden
half-links a and F from both sides. The concatenation 5 of these half-links cuts C.
Hence its projection is a bent cut X that makes a necessary crossing of W, and the
half-links corresponding to this crossing are unsafe. We infer that the bent cut

* itself is unsafe and major.

Lemma 5a.3. Let w be a wire in a safe design, and let Z' lift w. The forbidden
zones for ; are disjoint.

Proof. Call the design fl. Let S be the sheet of fQ, let M be its blanket, and let
p: M --+ S be the covering map. Suppose Z splits M into scraps L and R, and let
z be a point in both forbidden zones of &. Let i7 be any link in [WIL that passes
through z; say i7(t) = z. Applying Definition 5a.1 to z, we find straight half-links S
and F ending at z such that a(0) E L, F(0) E R, and both a = po 3 and T = po"

are unsafe, straight, nontrivial half-cuts for p o U at t. Thus if A and B are the
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Section 5A Construction of Ideal Routes

terminals of a and r respectively, we have

flow(a, Ql) > cap(o, fl) = 11all - width(A)/2 - width(w)/2;

flow(r,fQ) > cap(r, Q) = IJrII- width (B)/2 - width(w)/2.

We find an unsafe, major, simple cut in S1, which by Corollary 4f.5 implies that
Qt is not safe. Let j equal a* Fi:0, and put X = poj. Then X is a bent cut.
Because a and r are nontrivial, their terminals lie wholly in opposite scraps of Z,
and hence the link j" cuts iD. Therefore the crossing (1, t) of X by p o Z is necessary.
By Proposition 4d.2, we have

flow(x, fl) > flow(Xo:i/ 2, fl) + flow(xl:1/ 2, ) + width(w)

= flow(a, 0) + flow(r, fl) + width(w)

> Ilall + 11rl - width(A)/2 - width(B)/2.

Because hIxhl = 11011 + 1111, the final quantity is just the capacity of X. We conclude
that flow(x, It) exceeds cap(X, Qt), making X unsafe. Because its flow is nonzero, X is
nonempty in It. And since X is simple, Lemma 4e.3 implies that X is nondegenerate.
Hence X is major in 0t. D

Forbidden zones are made of barriers

The fact the forbidden zones for a link Z do not intersect does not immediately
imply that the zones can be avoided by a piecewise linear link between the terminals
of Z. To construct this link, we analyze the forbidden zones themselves.

First we chop the fringes of the blanket into small pieces. Let Q be a design on
the sheet S, and let M be a blanket of S with covering map p: M --+ S. Let w be
a wire in Qt, and let Z be a lift of w to M. Choose c smaller than the minimum
dimension of the fringes of S, and cover Bd S with connected open sets of size c or
less. Because Bd S is compact, finitely many sets suffice. Each set in the resulting
open cover is contractible and locally path-connected, and hence can be lifted to M
by Proposition 2b.8.

Each lift of these fringe pieces gives rise to some part of a forbidden zone. For
each lift U of a set V in the open cover, we define the barrier for & growing from U
to be the set of endpoints a(l) of forbidden half-links a for Z with a(O) E U. The
base of this barrier is the fringe containing U. A barrier for Z is a left-hand barrier
or right-hand barrier according to whether its base lies in left(Z) or right(&').

Both forbidden zones for Z are unions of barriers for Z. The following lemma
relates the barriers and zones more directly.

Lemma 5a.4. Let Z lift a wire w in the design 11; let Z be the right-hand
forbidden zone of and put R = right(Z). Then
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(1) every barrier for is a lift of the inside of a polygon;
(2) only finitely many right-hand barriers for (Z intersect (; and
(3) the union X of those barriers satisfies Z - R C X C Z.

Proof. Say Lo is a wire in the design fl on the sheet S. Call a point x in a fiat
manifold visible from a set U in that manifold if there is a straight path from z
to a point of U. Combining Definition 5a.1 with the definition of the flow across a
half-cut, we characterize barriers as follows:

Claim: A point z E M is in the barrier for C growing from U if and only if there
is a straight half-link a from U to x, and a half-link a from the fringe containing
&(1) to x, such that

flow (p o(a *a5:o), 0) > cap(p o)
- lip o all - width(F)/2 - width(w)/2,

where F is the fringe of S containing p(U).

The quantity f = flow(p o (a* &I10), Q) depends only on the fringe containing a(0),
because if this and Z are held fixed, all the links p o (a* 5:o) are link-homotopic.
Hence the barrier for Z growing from U is the set of points in M - Bd M visible
from U whose distance from U (in the wiring norm) is less than f + width(F)/2 +
width(w)/2, proving the claim.

Figure 5a-2. The shape of a barrier. We
break up the forbidden zones into barriers,

Swhich are lifts of polygonal regions like the
shaded set Q shown here. This region is the
set of points interior to the sheet that are

... .visible from the striped set V, and lie within
a certain distance of it.

Now put V = p(U), and let Q denote the set of points in S - Bd S visible from V
whose distance from p(U) is less than f + width(F)/2 + width(w)/2. Because the
wiring norm is piecewise linear, and the fringes are polygons, Q is bounded by
line segments. Because V is connected and open in Bd S, the set Q is connected

0,. and open; because V is smaller than any fringe of S, the closure of Q has no
"holes". Hence Q is the inside of a polygon in S, and C7Q is simply connected. By
Lemma 2b.8, p- (CI Q) consists of disjoint copies of C7 Q. One of these, call it P',
contains U. Put P = P' n p-(Q). One easily checks that P is the barrier for Z
growing from U, proving (1).
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We now prove part (2) by showing that Z intersects only finitely many of its
barriers. Given any x in M, choose a polygonal neighborhood 0 of p(x) in S, and
define the neighborhood N, of x to be the component of p-1 (O) that contains x. For
each set Q described above, the intersection o n Q has finitely many components,
and hence N, n p- 1 (Q) has finitely many components. Therefore N, intersects only
finitely many components of p-I(Q). Every barrier for Z is a component of p-(Q)
for some set Q described above, and the number of such sets Q is finite. Hence
N intersects only finitely many barriers of Z. Because ImO is compact, it can be
be covered by finitely many neighborhoods N.,, and hence intersects only finitely
many barriers, which proves (2). Let {P} be the set of right-hand barriers of
that intersect Z.

To show (3) we prove the inclusions Z - R C U, Pi g Z. Certainly every barrier
Pi is a subset of Z. On the other hand, if x is a point in Z - R, then x is in some
right-hand barrier P for &; we have x = a(1) where a(O) E R and a is a forbidden
half-link for Z. This half-link must intersect Z; say a(s) E Im Z where s > 0. Then
50:,. is a forbidden half-link for ;, so a(s) E P. Therefore P = P for some i because
P intersects Z. This proves part (3). 3

So every barrier in M is a connected component of the inverse image (under
the covering map) of an open set in S. Hence barriers are open. It follows that
forbidden zones, which are unions of barriers, are themselves open.

Detours

To construct a link that avoids forbidden zones, we start with any link and
repeatedly insert detours around barriers. Lemma 5a.4 shows that the number of
barriers we need to consider is finite. This proof technique is not the most elegant,
but it works. The following definition aids in describing the process of inserting
detours.

Definition 5a.5. Let a be a simple link in a blanket M, and let P be an open
subset of M. A detour of a around P is a simple link a' E [alL such that

Ima' C (ImaU Fr P) - P.

The detour a' is leftward if P C right(a') and a' does not intersect right(a).

The next lemma takes care of the induction step by showing that two detours
can be combined into one. Its use of the Detour Lemma gives that result its name.

Lemma 5a.6. Let 13 and /3' be leftward detours of a simple link a around the
open sets P and P'. Then there is a leftward detour of a around P U P'.

Proof. We apply the Detour Lemma (3c.3) to the links / and P', obtaining a simple
link -y that is link-homotopic to both 3 and fl', and hence to a. Part of that lemma
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Routing a Safe Design Chapter 5

d~m- YFigure 5a-3. Making a detour around a
single barrier. If the link j intersects the
barrier P, we splice a section of Fr P into w
to form a simple path /, and then trim / to
form a simple link y. Applying the Detour

P Lemma to -y and Z, we get a detour of
around P.

states that the right-hand scrap of -f contains those of /3 and /3', so both P and P'
lie to the right of -y, as does the right-hand scrap of a. Hence if -Y is a detour of
a around P U P', it is leftward. The other claim of Lemma 3c.3 is that Im - lies
within Im / U Im /3'. Therefore

Im /f C Im / U Im /3'
C (ImaUFrP)U(ImaUFrP')

= maU (Fr PU Fr P').

An elementary topological calculation shows that Fr(P U P') = (Fr P U Fr P') -
(P U P'). Since Im -y does not intersect P or P', it follows that

ImC _ (ImaU Fr(PuP')) - (uP').

Therefore -f is a detour of a around P U P'. 3

Now we consider the basis case: making a single detour around a barrier. Be-
cause barriers are polygons, this is manageable, but somewhat tedious.

Lemma 5a.7. Let L be a lift of a wire in a safe design fl. Then for every
right-hand barrier P of Z;, there is a leftward detour of Z around P.
Proof. Let L and R denote left(Z) and right(&); let Z be the right-hand forbid-
den zone of Z. The set P is homeomorphic to the inside of a simple polygon
by Lemma 5a.4, and we may assume it intersects Im I. To construct the de-

* tour, we replace the parts of ) that pass through P by a path along Fr P. Put
s = infZ-(C7P) and t = sup *'(P). Now let r be a simple sublink within P
from a(s) to Z(t), and consider the link

a = O:& * * t:1.

It separates the polygon Fr P into two components; let r' be the path in Fr P from
:c(s) to (t) that lies to the left of a, and hence keeps P to the right. Define a path

S• by
60 =o:s*' *W:1.
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The path P is piecewise linear, and lies in Im ZU Fr P. We show that / intersects
no fringe F other than the terminals of &. If F lies completely in L, then all points
close enough to F are in the left-hand forbidden zone of Z, which P cannot touch
by Lemma 5a.3. Furthermore, 8 cannot intersect any fringe that lies completely
in R, because / lies to the left of a, while the fringes of R lie to the right of a.
(The link a is link-homotopic to , and hence by Proposition 3c.4, separates the
fringes of M as Z does.) Therefore 6 runs between the terminals of [a. Its middle
may intersect these terminals, however.

We now convert / into a simple link. Say that / runs from fringe X to fringe Y.
Set s = sup /-i(X) and t = inf ((s, 1] n /- 1 (Y)). Then -f = #.:t is a simple link
between X and Y, and is piecewise linear; its image also lies in Im U Fr P. Then
-y is a detour of Z around P: it is link-homotopic to [ because it runs between the
same terminals, and its image lies in (Im Z U Fr P) - P. By the construction of #,
there are some points of P that lie in right(7). Hence P, being connected, must lie
entirely in right(7).

Still, -f may not be a leftward detour, because it may enter the right-hand scrap
of Z. But the Detour Lemma (3c.3) applied to Z and y solves this problem. E3

All that remains is to put the pieces together.

Proposition 5a.8. Every wire in a safe design has an evasive route.

Proof. Let 0 be a safe design on a sheet S, and let w be a wire in fl. Let M be
a blanket of S with covering map p: M --+ S. Lift w to a simple link Z in M. We
construct an evasive route 6 by finding detours of Z around its forbidden zones.

Let L and R be the left and right scraps of Z, and let Z be the right-hand
forbidden zone of Z. Apply Lemma 5a.4 to find barriers P such that Z - R C U Pi.
For each i, apply Lemma 5a.7 to obtain a leftward detour of C around P,. Repeated
application of Lemma 5a.6 then gives us a leftward detour of 0 around U Pi. Call it
6. Because 6 does not enter R, and avoids Z - R, it must avoid Z entirely. Now let
Z' be the right-hand forbidden zone of 5, which is the left-hand forbidden zone of Z.
Decompose Z - L into barriers P,', and apply the same technique to find a leftward
detour q of b around Z'. By construction, q avoids Z', and Im 77 C Im 6U Fr Z'.

I claim that qi avoids Z as well as Z'. Let x be a point of Im 77. If x E ImS,
then x E Im6, and hence x Z. So assume that x E FrZ'. If x were in Z,
then because Z is open (Lemma 5a.4), Z and Z' would intersect, contradicting
Lemma 5a.3. Therefore qi is a simple link in [W&L that avoids the forbidden zones of

4 . By Lemma 5a.2, the route p o 17 of w is evasive in f. E3

Ideal routes

Building on Proposition 5a.8, we now complete the construction of ideal routes
for wires in a safe design. All that remains is to show that among the evasive routes
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of a wire there is one of minimum length. The Reparameterization Lemma (3d. 1)
allows us to make this route canonical.

Proposition 5a.9. Every wire in a safe design has an ideal route.

Proof. Let fQ be a safe design on a sheet S; let w be a wire in Q with lifting E. Let M

be the blanket for S, and denote by Z the union of the forbidden zones of Z. Let X

and Y denote the fringes of M containing i(O) and C(1), respectively. We consider
the family A of canonical, evasive routes of w. Since reparameterizing a path does
not affect its evasiveness or its arc length (see Lemma 3d.1), Proposition 5a.8 shows
that A is nonempty, and I = inf{ IAI : A E A }. By Proposition 2c.8, the collection A
contains a uniformly convergent sequence (ak)ok=, whose limit a has euclidean arc
length at most 1.

I claim that a has a lifting : X --i Y that avoids Z. Let 6 be any lift of a
to M. By Lemma 3a.7, the paths ak have lifts Sk that converge uniformly to fi.
In particular, there is a constant K such that the paths {/ 3k}L>K run between the
same fringes of M. Let h be a covering transformation that carries those fringes
onto the fringes of LZ. (One must exist, since the paths ak have liftings in [f]L.)
Then ho 0k is a path in M - Z for each k > K, and since forbidden zones are open,
by Lemma 5a.4, the limit h o # of the sequence (h o 1k) also avoids Z. Write h o s
as &. The fringes of M are closed, so the endpoints of 8 lie on the terminals of P3k,
and therefore & has the same terminals as o.

Now we convert a into a canonical route of w. Put s = sup a-1 (X) and t =

inf((s, 11 n a-'(Y)). Then &.:t intersects X and Y at its endpoints alone. It cannot
intersect any other fringe of M, for it would have to cross Z to do so. Therefore a:t
is a link, and a.:t is an evasive route of w. Using Lemma 3d.1, let 5 be a canonical
version of &o:t; it has the same image, arc length, and path class. One can check
that p- 1 (X) = {0) and -'(Y) = {1), which makes j a link. Hence its projection -Y
is a canonical, evasive route of w; in symbols, -f E A. We have 171 = _<.:1 ! a II 1,
and hence 171J = 1. Therefore -f has minimum length among all evasive routes of w.
In other words, -t is an ideal route of w. E3

5B. Ideal Routes Are Taut

Now we begin the process of characterizing ideal routes. Top priority is to show

that liftings of ideal routes are simple, so that our results about simple links will
apply to them. At the same time we prove that an ideal route has vertices only
where it bends around its barriers. Then we prove a key technical lemma: every

straight half-cut for an ideal route is either trivial or semisimple. That fact enables
us to prove that ideal routes are taut: wherever one turns, it is supported by a
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straight, marginal, nondegenerate half-cut. Later sections will use these half-cuts

to demonstrate that other ideal routes, which are evasive, cannot approach this one.
And as we show in Section 6B, tautness implies that the ideal route cannot be made

any shorter without becoming infeasible.

Getting off the ground

One easy result is that lifts of ideal routes are injective. For if / lifts an ideal

route a of w and )3(s) = 0(t), where s < t, then ao:s * at:a is an evasive route
of w, and its arc length is 1 - t + s times that of a because a is canonical. Since

a has minimum length among the evasive routes of w, and lal > 0, it follows that

s = t. The first task is to prove that these liftings are piecewise linear, and therefore

simple. We start with a technical lemma.

Lemma 5b.1. Let a be a link in a blanket. There are simple links /, -Y E [alL
such that Im a E left(#) n right(7).

Proof. For each point t E I, let at • [alL be a simple link that passes through
a(t). By modifying at in the neighborhood of a(t), find links /, and y, in [all such

that a(t) E left(8,) n right(-t). Write Lt = left(/t) and set Ut = a-(Lt); similarly,
put Rt = right('yt) and V = a-(R,). Since t EU, f n Vt and the sets Ut and Vt are
open, the collection {Ut n V} is an open cover of I. Because I is compact, it has a

finite subcover
ut, n v,,..., u,. n v,.

Then Im a C Ui=1 L,,, and also Im a C Uni= 1 Rt,. By iterative application of
the Detour Lemma (3c.3), there is a simple link -, E [alL whose right-hand scrap
contains those of -ftl, -yt,, ... , -ft,. A symmetrical argument yields a simple link

0 E [alL whose left-hand scrap contains those of /t,, / t,, ... , Otn. It follows that
Im a lies left of 8 and right of -y.

Turning points of ideal routes

The proof that shows ideal routes are piecewise linear, which we are about to
begin, also characterizes the points at which they turn. Suppose that a is a simple
link in a blanket M, and that a turns at x E (0, 1). Let A and B be the scraps of

M - Im a. One of these scraps, say A, contains points internal to the angle made
by a at z. Let C be a subset of M. If C intersects A but not B, then a turns
toward C at z; if C intersects B but not A, then a turns away from C at x.

We prove the very intuitive fact that at each joint of an ideal route, it bends
around the vertex of a barrier, and hence turns toward that barrier. The idea behind
the proof is that where an ideal route is not constrained by the vertex of a barrier,

it is elastic and hence linear. We have worked through a similar proof before: see
Lemma 3d.5.
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Lemma 5b.2. Let a be an ideal route with lift a. The link i is simple, and if
a is not straight at x E (0, 1), then some barrier P for a has a vertex at a(x), and
& turns toward P at x.

Proof. Let Q be a safe design on a sheet S, and let a be an ideal route of a
wire w E f0. Let M be a blanket of S with covering map p: M -+ S. Let Z
be the unicn of the forbidden zones for a. Because a is an evasive route of w,
the link a avoids Z. By Lemma 5b.1, there are links 6 and -y in M such that
Im a E left(0) n right(y).

Suppose that a is not straight at the point x E (0, 1). Let U be a neighborhood of
ai(x) that intersects neither / nor y. By Lemma 5a.4, the set UnZ is the intersection
of U with finitely many barriers P1 , ... , P,, of 6 and -f. Also by Lemma 5a.4, these
barriers are polygonal. Hence by restricting U we may assume that U contains no
vertex of a barrier Pi except those lying at a(x). Then the situation is as shown

N' in Figure 5b- 1. We may assume that U n Bd M is empty and that p(U) is convex.
Because a is continuous and evasive, there is an interval (s, t) containing x such

I- that a[s, tjC U - Z.

Figure 5b-1. Where an ideal link turns.
Within a neighborhood small enough to in-

.............. a W .clude only one barrier vertex, a lifting a of
an ideal route is either straight, or else it

the barrier toward turns toward that barrier as shown here.
which i turns at x

The straight path Z between a(s) and 6(t) must intersect Z. For if not, let a'
be the result of replacing the subpath 6.:t of a with ic. Then a' avoids Z, and hence
c' = p o &' is evasive. Furthermore, a' _L a because their lifts are link-homotopic.
If a' 6 a, then a' is shorter, because a linear path is the only shortest canonical
path between two points. (Compare Lemma 3d.3.) But a has the minimum length
among all evasive routes of w. Therefore a = a', so a is straight at x, contrary to
assumption. Thus Z must intersect some barrier P, and this barrier must have a
vertex at x. Hence a is straight everywhere except the vertices of the barriers P.
Since these vertices are finite in number, and a has finite arc length, we conclude
that a is piecewise linear. In fact, because a is nonconstant and canonical, it is
piecewise straight.

It remains to show that a turns toward Pi at x. Let F be the linear path from
a(s) to a(x), and let F be the linear path from a(x) to a(t). Then i and F do not
intersect Z, so by the argument above, we must have :., = i and ii., = F. We
conclude that a turns at x. The barrier P, has points internal to the angle of a
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at x, and does not intersect a because a is evasive. Therefore a turns toward Pat x. 13

We can extend the notion of turning to the endpoints of a link. Let a be a
simple link in a sheet S. We say that a turns at e E {0, 1} if a straight subpath
ae:t of a makes an acute angle with an edge of the fringe containing a(e). A link
in a blanket turns wherever its projection does. Let a be a simple link in a blanket
M, and let e E {0, 1. be a point at which its projection turns. Then we say a
turns at e. Let A and B denote the scraps of M - Im a, and suppose A contains
points internal to an acute angle made by a at e. We say that a turns toward a set
C C M at e if C intersects A but not B. Then we obtain the following extension
of Lemma 5b.2.

Lemma 5b.3. Let a be an ideal route with lift i. If a turns at e E {0,1},
then some barrier P for i has a vertex at 6(e), and ii turns toward P at e.

Proof. Assume without loss of generality that e = 0. Let v be a straight path in
the terminal containing a(0) such that v * a has an acute angle at a(0). Let E be
the fringe containing &(0), and let i be a lift of v satisfying i(1) = a(o). Then a
turns toward V (0) at 0. Let A be the scrap of M - Im a that contains i;(0), and let
Z C A be the forbidden zone for & on the same side as i(0).

Some barrier P C Z for a has a vertex at &(0). For if not, then because no
edge of a barrier in Z can contain &(0), there is a neighborhood U of &(0) that does
not intersect Z. Let a be a straight path in this neighborhood from E to a(s) that
intersects E perpendicularly. Then 3 is shorter than &o:., and a * ao: avoids the
forbidden zones of a. Projecting to the sheet, one thus obtains an evasive route of
a that is shorter than a, contradicting the assumption that a is ideal. 03

Straight half-cuts for ideal routes

Now that we know ideal routes are piecewise straight, we can begin to apply
our tools to them. One major property of a route that is ideal for a design Q is
that its nontrivial straight half-cuts respect f. Actually, they have an even stronger
property: they are semisimple in 0, which by Proposition 4e.6 implies that they are
nondegenerate in S1 and respect f0 strongly.

Proposition 5b.4. If w is an ideal route, then every straight half-cut for p is

either trivial or semisimple.

Outline of proof. Let a be a nontrivial straight half-cut for w at s. Let S be the
relevant sheet, and let -y be a straight cut of S such that a = "oa for some a E (0, 1).
Lift w to a simple link D, and lift -y to a straight link 5 such that 5(a) = 5(s). Let
(b, t) be the crossing of j by L that minimizes b. The half-cut YO:b for w at t is akin
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to the half-cut -t0:. for w at s, which is a. Hence it suffices to prove the lemma in
the case (b, t) = (a, s). We find a simple cut X and a necessary crossing (c, s) of x
by w such that 0 = Xo:c. There are five cases to consider, of which four are easy
and the fifth requires a further case analysis.

()(2) (3) (4)

Figure 5b-2. Straight half-cuts for an ideal route. Given a nontrivial straight
half-cut a for an ideal route w, we extend it to a straight cut -y, and lift both the
cut and the route to the blanket. The liftings are denoted j and C. In each of
four cases, here labeled (1) through (4), we construct a link (dashed) starting at
5(0) that cuts E. The.projection of this bent link is a simple cut that makes a
semisimple. One case is missing here; it is like case (4) but Z does not turn toward
j(1). For this case, see Figure 5b-3.

(1) The link Z does not cross over j at a. Then & turns away from 5(0) at s.
Let P be a barrier for E having a vertex at Z(s), such that turns toward
P at s. Choose a bent half-link 8 in C1 P from the base of P to a(s). Then
the link a = 50:o * 01:0 is simple, and its endpoints lie on opposite sides of Z.
Since o and the projection of 0 are nontrivial half-cuts, neither 5(0) nor 0(0)
lies on a terminal of Z2. Hence a actually cuts Z. So w necessarily crosses
po ce at s. We set x = p o a andc= 1

(2) The link Z crosses over i at s, and crosses back at some point j(b) = Z(t),
where b > a. Assume (b, t) is chosen to minimize b - a. Since the path 5.:b is
shorter than Z,:t, it must intersect a forbidden zone of Z. Choose a half-link
0 in this forbidden zone such that 0(1) = i(e) for some e E (a, b). Then j(0)
and 0(1) lie on opposite sides of , and neither lies on a terminal of Z. Hence
f= 51: * 01:0 cuts Z, and so w makes a necessary crossing with a at w(s).

Because a is bent and its segments are not parallel, p o a is simple. We put
X = po a and define c by a(c)= Z(s).

It remains to consider situations in which E crosses over 5 at s and does not cross
back. Then 5(0) and 5(l) lie on opposite sides of D, and 5 either cuts or shares a

-164-



Section 5B Ideal Routes Are Taut

terminal with Z. Since a is not trivial, the shared terminal cannot contain j(0).

Thus we have the following cases.

(3) The link Z cuts ;. Then the crossing (a, s) of -y by w is necessary, and we

simply put X = -y and c - a.

(4) The link L crosses over j at s, and cross(YZ) = 1; for some i E {0, 1}
the point j(1) lies on the fringe containing Z(i); and Z turns toward j(1)

at a point in (i, s). Then a forbidden zone of Z intersects the inside of

Im QZ:. *ji:.), which is a web of one thread. Because there are no fringes in

this area, and Z avoids its forbidden zones, this zone must intersect il:a. We

construct X as in case (2).

(2') (3')

Figure 5b-3. Straight half-cuts, continued. The difficult case in Figure 5b-2
occurs when j and i share a terminal T, and C does not turn toward 5(1). To
handle this we replace 5 by a bent link j' that avoids T. Essentially the same
cases arise, but 5' and Z cannot share a second terminal T' without falling into
case (4').

The remaining case is the messy one. We can assume that C crosses over j at

s, that (a, s) is the only crossing of 5 by Z, that Z(i) shares a fringe with 5(1), and

that Z does not turn toward 5(1) at any point in (i, s). The situation is shown in

Figure 5b-3. Let F be the fringe containing w(i), and let A be a line tangent to F

at -y(l). Being convex, F lies on the opposite side of A from -y(0). Let r be the

half-cut of w at s such that r is parallel to A and r(O) lies on the opposite side of 'Y

from w(1). Then T does not intersect the fringe containing -y(l). In addition, o *

crosses over w at w(s), because otherwise Wi:. would have to turn toward 7r(1).

We perform another case analysis like that above, but with a * F in place of

. The details are omitted. Because w crosses over a * F at s, there is no case

corresponding to case (1). The remaining cases correspond to (2), (3), and (4). No

further problems arise. For if w shares one terminal with -y(1) and the other with

7(0), geometry dictates that it must turn toward them somewhere. D
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Struts for ideal routes

The following definition and proposition are central to the analysis of ideal
routes. We show that wherever an ideal route turns, it has a rigid cut or half-cut
toward which the route turns. If a cut or half-cut 0 is nondegenerate and straight,
and margin(O, 0) = 0, then we say 0 is rigid in S1.

Definition 5b.5. Let f be a design on a sheet S, and let w route a wire in f0.
A strut for w at t is a rigid cut or half-cut a for w at t with the following property:
if 5 and Z are lifts of a! and w satisfying a(1) = C(t), then Z turns toward a(0) at t.
The link w is taut if there is a strut for w at every joint of w.

The proof that ideal routes are taut is fairly intuitive. Lemmas 5b.2 and 5b.3
say that ideal routes only turn at the vertices of barriers. And since points inside
barriers correspond to nondegenerate, unsafe half-cuts, it stands to reason that the
vertices of barriers correspond to nondegenerate, rigid cuts and half-cuts. Using
the results on chains from Section 4F, we construct a rigid half-cut for each joint
of an ideal route. The lifting of this half-cut, moreover, lies in the closure of the
barrier that constrains that joint. Since ideal routes turn toward the barriers that
constrain them, the half-cut turns out to be a strut.

Proposition 5b.6. Ideal routes are taut.

Proof. Let fl be a safe design on a sheet S, and let w be an ideal route of a wire in
fl. Denote by M the blanket of S, and let p: M --+ S be the covering map. Lift W
to a simple link Z in M. Suppose w turns at t E [0, 1]. Then by Lemma 5b.2 there
is a barrier P for Z with a vertex at Z(t) such that C turns toward the base of P
at t. Let B denote the base of P, and as in Lemma 5a.4, let f denote the common
flow across the half-cuts whose lifts are the forbidden half-links that define P. By
the geometry of barriers (see Lemma 5a.4), there is a straight path 5 in C1 P from
B to Z(t) whose length is

11p o 511 = f + width(p(B))/2 + width(w)/2. (5-i)

There is also a bent path a in C7 P from 5(0) to Z(t) whose middle lies in P C
M-BdM. Puto=poaanda=po5.

The cases t E (0, 1) and t E {0, 1 have to be distinguished, but they are
essentially the same. If t E (0, 1), then a is a bent half-cut for w at t, and a is the
elastic chain for o,. Also, a is akin to a straight half-cut 0 for w (see Figure 5b-4),
and hence by Proposition 5b.4, a is semisimple (it cannot be trivial). Therefore
(Proposition 4e.6) a is nondegenerate and respects fl. Similarly, if t E {0, 1}, then
a is a bent cut, and a is the elastic chain for a. In addition, a is link-homotopic
to an associated cut of a straight half cut 0 for w, and again a is nondegenerate
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Figure 5b-4. Finding struts for ideal
COi routes. This figure shows the situation at

P I a vertex Z(t) for the lifting & of an ideal
route w. At t the simple link C turns to-

a ward a barrier P, on whose frontier Z(t) lies.
The bent path a which ends at I(t) has the
straight path & as its elastic chain. The final
link of 5 is shown to lift a strut for w. The
dashed line represents a lifting of a straight
half-cut 0 for w; if a is a half-cut, then a

B and 0 are akin.

and respects fl. Also a is nonempty. This follows from the fact that terminals are
convex.

In both cases the results of Section 4F apply. Lemma 4f.3 gives us a bound on
the capacity of a; together with inequality (5-1), it gives

cap(a) _< cap(a) + 1ail - 1a1l
= 1Ial - width(p(B))/2 - width(w)/2

= f = flow(a, f ), (5-2)

and the inequality is strict if a is degenerate. Proposition 4f.1 gives us the inequality
flow(a, Q) >_ flow(a, S) - gaps(a). If a l , ... , an are the links of a, then we can
conclude

nZ"flow(a,, ) flow(a, fl) - gaps(a). (5-3)

Subtracting this inequality from the equation E"=1 cap(ai) = cap(a) - gaps(a), we
get

> margin(ai, Q) _ cap(a) - flow(a, Q) <0. (5-4)

The second inequality follows from (5-2). Lemma 4f.2 ensures that n > 1.

Now we deduce that the final major link in a is nondegenerate. Each ai is a

nondegenerate straight cut or half-cut for w. Since f is safe and w is evasive, all
the ai have nonnegative margin. Hence inequality (5-4) holds with equality, and
therefore none of the inequalities that led up to it can be strict. In particular, &
cannot be degenerate; an must end at w(t). Hence an is a nondegenerate straight
cut or half-cut r for w at t. By (5-4) again, margin(r, 0) <0 0, which implies that r
is rigid.
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To check turning, let F be a lift of r satisfying F(1) = a(t). To show that T is a
strut for w at t, it remains to show that Z turns toward F(O) at t. But this is easy,
because F(O) lies in Cl P. Since F(O) is not on L, it lies on the same side of C as P.
And C turns toward P at t by assumption. E3

5C. Ideal Routes Form a Design

In this section we see the fir:t fruits of our analysis of ideal routes. We show that
the ideal routes of wires in a safe design are actually wires, and that they do not
intersect. Hence they actually form an embedding of the safe design, and we call
this embedding an ideal design.

Figure Sc-i. When lifts of ideal routes cross over. The links a and 83 lift ideal
routes (possibly the same one). The scraps of a are A and A'; those of /3 are B and

_j B'. Where they cross over, they form a simple loop A, and at one of its internal
~angles, a turns away from the endpoints of /3- Since a is taut, it has a strut or

there whose lift is shown. The half-link crosses /3, forming a half-link that
ends on /3. This half-link turns out to be forbidden to 8-.

~A single technique is used both to rule out intersections between different routes
[@- and to rule out self-intersections. Assuming that two routes have an undesirable

_ crossing, we first construct lifts of those routes that reflect this crossing. Each

~of these two links has its endpoints on the same side of the other. As shown in
Figure 5c-1, one of the links has a joint whose strut has a lifting that crosses over
the other link. We show that this strut contains an unsafe, nondegenerate half-cut

0 o* for the other link. This contradicts the fact that ideal routes are evasive, and shows
~that the undesirable crossing could not have occurred.

The first step, finding an appropriate turning point, is handled mainly by the
following lemma. Two links in a blanket cross over if the image of one contains
points in both scraps of tbe other.
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Lemma 5c.1. Let a and / be coherent links in a blanket M. If a and /3 cross
over, then there is some z E (0, 1) such that, up to renaming of a and 3,

(1) a turns away from /3(0) at z, and
(2) /3 separates a(z) from a(0).

Proof. Let A and A' be the scraps of M - Im a. By Lemma 4c.5, both endpoints
of /3 lie in one of these scraps, say A'. Let B and B' be the scraps of M - Im3, and
assume that B' contains the endpoints of a. The links a and 3 are simple because
they cohere.

Suppose a and /3 cross over, and choose a maximal interval (t, t') g 3-'(A).
Define s and s' by the equations a(s) = /3(t) and a(s') = 3(t'). Then the path
C a,.,, * /3t':t is a simple loop A in C7 A n C1 B; the middle of a.:., lies in B, and the
middle of /3t:t, lies in A. (See Figure 5c-1.) Hence the inside of the loop A intersects
both A and B.

Corollary 3c.7 shows that A must have at least three internal angles of measure
less than r. Two of these angles can lie at /(t) or 0(t'), but the third must lie in
Mid a,:,, or Mid /3t:t,. If this angle is at a(x), where x E (s, s'), then a turns toward
A, and hence away from /3(0), at x. Since a(x) lies in B while a(0) lies in B',
conclusions (1) and (2) hold with z = x. If the angle is at (Y), where y E (t,t'),
then /3 turns toward B, and hence away from a(0), at y. Since 0(y) lies in A while
/3(0) lies in A', conclusions (1) and (2) hold with a and /3 interchanged, and with
z=y. 0

A second technical lemma handles the construction of the unsafe half-cut within
the strut. The strut is called a, and the unsafe half-cut it contains is called r.

Lemma 5c.2. Let v and w be ideal routes of wires in a safe design (. Let c
and /3 lift v and w, respectively, and assume a : /. Let or be a strut for v at z,
and let a be a lifting of or such that a(1) = a(z) and a separates a(0) from the
endpoints of /3. Then 2i cannot intersect /.
Proof. We suppose that a does intersect /3 and derive a contradiction. Because a

is a strut, it is nondegenerate. Let (s, b) be a crossing of a by /3 that minimizes s.
Then 00:. is a straight half-cut for w at b. Call this half-cut r. Because r is straight
and w is ideal, r is either trivial or semisimple, by Proposition 5b.4. By assumption,
a separates the terminal of T (which is also the terminal of a) from the endpoints
of /3. Hence for r to be trivial, its terminal would have to be a terminal of a as
well, making a trivial. But cr is nontrivial, so r is semisimple in fQ Proposition 4e.6

implies that r is nondegenerate and that r respects fQ.
Now we show that r is unsafe, contradicting the evasiveness of w. Because a

and /3 cohere, Corollary 4c.4 gives us a terminal of 3 that is not shared by a.

Suppose that /3(e) lies on this terminal, where e E {0, 1}. Let j be the simple link
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Z0o. * Ob:e. The endpoints of j lie on opposite sides of a, and do not lie on either
terminal of a. Hence j actually cuts a. If X denotes the cut p o j, then there is a
necessary crossing (c, a) of X by v. Applying Proposition 4d.2, we infer that

flow(x, Q) > flow(Xo:c, Q) + flow(Xl:c, fl) + width(w).

The link X is an associated cut for r, and since r respects 0l, we have flow(x, I) =
flow(r,w) by Lemma 4d.3. Furthermore, XO:c and a are akin as half-cuts for v, and
hence have the same flow. We conclude that

flow(r, fl) 2_ flow(, 11) + wndth(w).

Since r is shorter than a, it follows that margin(r, l) :_ margin(a, f) - width(w),
and the right-hand side is negative because o is rigid. Therefore margin(r, fl) < 0,
which means that r is unsafe in fl. 03

Lemmas 5c.1 and 5c.2 are combined in the following proof.

Proposition 5c.3. Let v and w be ideal routes of wires in a safe design. If
v(s) = w(t), then v = w and s = t.

Proof. Let fl be the safe design, and let M be a blanket of its sheet S with covering
map p: M --. S. Suppose that v(s) = w(t). Lift v to a and w to /3 so that
a(s) = /(t). Then ar and 8 are simple. If v 4 w, then certainly a 3 1; if s 9 t,
then a(s) : a(t) because a is simple, and hence P(t) # a(t). In both cases a 9 /3.

We use Lemma 5c.2 to derive a contradiction. It may be necessary to interchange
v and a with w and 8, but because of the symmetry between them, we only consider
the case in which no exchange is needed. By Lemma 4c.5, the endpoints of 8 lie on
the same side of a. Let A and A' be the scraps of M - Im a; name them so that
03(0) E A'. Let B and B' denote the scraps of M - Im/3, and assume a(0) E B'.
Suppose we find a strut a for a at a point z, and a lift a of a such that a(l) = a(z)
and ;5(0) E A. Since the endpoints of /3 do not lie in A, Lemma 5c.2 will show that
a does not intersect 3. There are two cases to consider.

(A) If a and # cross over, Lemma 5c.1 applies. Let z be the point given by
Lemma 5c.1. By part (1), a turns away from /(0) at z, which means a turns
toward A at z. Since v is taut, there is a strut a for v at z and a lifting i
of a such that a(1) = a(z) and a turns toward a(0) at z. Hence 5(0) lies in
A, and Lemma 5c.2 implies that /3 does not intersect &. But by part (2) of
Lemma 5c.1, 3 separates a(z) from a(0). As one can check, all the fringes
of A lie in B', and hence a(0) and a(0) lie on the same side of /3. Thus /
separates the endpoints of a, and so a intersects /3, a contradiction.

(B) Suppose instead that a and / do not cross over. Choose a maximal interval

Ix, yJ C 3'(Im a). Because a and /3 are simple, we have /([x, y]) = a([u, v])
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OW (x)___

c (u) 
CLV-B 

B '

A'
Aa

Figure 5c-2. Intersecting lifts of ideal routes. Figure 5c-1 does not cover the pos-
sibility that a and 3 intersect without crossing over. But then at some point where
a and 0 touch, one turns away from the endpoints of the other, and essentially
the same construction goes through.

for some interval [u, v] C I. (See Figure 5c-2.) There must be some point
in [u, v] at which a turns toward A, or some point in [x, y) at which P turns
toward B. By symmetry, we may assume the former; say a turns toward
A at z, where z E [u, v]. Because v is taut, there is a rigid half-cut a for
v at z such that if a is lifted to a with a(l) - a(z), then Z(O) E A. Now
Lemma 5c.2 implies that a cannot intersect/j. But a intersects / at Z(1),
again giving a contradiction. 03

By Lemma 5b.2 and Proposition 5c.3, the ideal routes of wires in a safe design
are piecewise linear and injective, hence simple. And since they are link-homotopic
to wires, their terminals are convex inner fringes. Therefore ideal routes are wires
in their own right; we call them ideal embeddings or ideal wires. Proposition 5c.3
implies that the ideal wires form a design.

Corollary 5c.4. If every wire in a safe design is replaced by an ideal route, the
result is a design. E3

* We call it an ideal design. Because the flow across a cut is the same in all
embeddings of a design, as is its capacity, a cut that is safe in a design is also safe
in any embedding of the design. Furthermore, a cut that is major in a design is
major in any embedding of that design. Therefore ideal designs are safe.

5D. Ideal Designs Are Properly Connected

The title of this section refers to Proposition 5d.4, the main result of this section:
the articles of an ideal design have disjoint extents. This proposition goes a long way
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toward showing that the ideal routes form a proper design, as defined in Section 4A.
The most difficult part of Proposition 5d.4 is the claim that no two wires in an ideal
design have overlapping extents. The method we use to prove this claim is similar
to that used in Section 5C: given two ideal wires that are two close, we find a strut
for one wire that gives rise to an unsafe, straight, nondegenerate half-cut for the

other, contradicting the evasiveness of the second wire.

Figure 5d-1. When ideal wires approach too closely. As in Figure 5c-1, the links
a and # lift ideal routes, but this time they do not cross over. Instead, at a point
of closest approach, a turns away from 0. Since a is taut, it has a strut a at this
angle whose lift a is shown. The straight path F lifts a minimum-length mid-cut
between a and 0, and the bent half-link a * r crosses over a. Together a, 3, &,
and F split the blanket into five scraps, here denoted A through E.

Our analysis of ideal wires continues by examining the points at which they
approach each other most closely. Figure 5d-1 illuminates the situation. If two
nonintersecting taut wires are not parallel, there is a point at which the wires
are closest and one turns away from the other, according to Lemma 5d.1 below.

Concatenating the strut for that joint with a minimum-length mid-cut between the
wires, one obtains a bent half-cut for the second wire that crosses over the first

* wire. We prove in Lemma 5d.2 that the flow across this bent half-cut is the flow
across the strut plus the width of the first wire. If the two wires have overlapping
extents, then the capacity of the bent half-cut exceeds the capacity of the strut
by less than the width of the first wire. Hence the bent half-cut is unsafe. The
technical difficulties arise in proving that it is nondegenerate and that it respects

*the design. Lemma 4f.6 then shows that the second wire has an unsafe, straight,
nondegenerate half-cut, implying that it cannot be ideal.

'V

Turning points, again
The first step is the geometric one of finding an appropriate joint. The result
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we use is taken from [52).

Lemma 5d.1. Let a and /3 be disjoint PL paths in R 2 . There are points a(s)
and 8(t) such that hIa(s) - #(t)i is the minimum distance between Im a and Im /3,
and either

(1) a turns away from 3(t) at s; or
(2) 3 turns away from a(s) at t; or
(3) eithers E {O,1} ortE {O,1}. 03

The proof is straightforward but messy; I refer the reader to [52].
One comment is in order about turning points in sheets and blankets. If 5 lifts

a link a in a sheet, and & turns toward a point z at x, then a turns toward the
projection of z at x provided that some straight path F starting at z intersects Im a
only at a(z).

Construction of the bent half-cut

The bulk of the technical work is performed by the following lemma. This lemma
takes care to allow the two ideal wires to coincide, because we will also need this
result to prove that ideal wires are self-avoiding. We say that a subcut -f is clean
in a design fl if no wire in fl intersects the middle of -y.

Lemma 5d.2. Let v and w be wires in an ideal design fl, let a be a strut for v
at s, and let r be a nondegenerate, clean, straight mid-cut between v at s and w
at t. If a * T crosses over v at a(1), then I11 _> width(v)/2 + width(w)/2.
Proof. Let a, /3, a, and F be lifts of v, w, o, and r that satisfy a(1) = a(s) = F(O)
and 6(t) = (1). There can be no other intersections among these paths. First of
all, a and 8 cannot cross, and neither one can intersect Mid -r because r is clean.
Since a * F crosses over a at a(1), the link a separates /3 and Mid F from Mid a.
And finally, a intersects 2 only at a(1) because a is a strut for v.

We now consider the bent half-cut o, * for w at t. Let 5 denote the simple link
a* F*3t:i. Its projection X is a cut associated to a* r, and in fact flow(a *r, n) =
flow(x, Q) by definition. Because r is nondegenerate, the terminals of a and /3 are
all distinct, and hence j cuts a. Define a by i(a) = a(s). Then the crossing (a, s)
of X by v is necessary, and Proposition 4d.2 shows that

flow(x, fl) >_ flow(Xo:a, fl) + flow(Xi:., f) + width(v).

Now Xo:a is just a, and because a is a strut, we have flow(a, Q) = cap(a, fl). Denote

by X the fringe containing o(O). Using the definition of capacity, we have

flow(, * r,0) > cap(a, n) + width(v)

_11-1ll - width(X)/2 + width(v)/2. (5-5)
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Suppose we can prove that a * r is safe. Then we can substitute cap(a * r) for
flow(a * r, 11) in (5-5), obtaining the inequality

11o, * r - width(X)/2 - width(w)/2 > 11lul - width(X)/2 + width(v)/2,

which implies the desired result JJrJ -width(v)/2 + width(w)/2.
The next step is to prove that a * r is nondegenerate in fl. Let F denote the

terminal of a. If a *r were degenerate, then F would be part of the same branch B
of Q as the terminals of /3. But F and 3 lie on opposite sides of a. Hence that
branch B would intersect a. Either B would contain the terminals of 01, implying
that a and r are degenerate, or else B would include a link r that cut c and lifted
a wire of Ql. The latter is impossible, because a and q would cohere. We conclude
that a * r is nondegenerate.

To prove that a * T is safe, we use Lemma 4f.6. It implies that if a * r is an
unsafe, nondegenerate, simple half-cut for w that respects Ql, then w has an unsafe,
nondegenerate, straight half-cut. Since w is evasive, the latter is false. We already
know that a*,r is nondegenerate and simple, so it suffices to show that a*,r respects
Q, which is to say that its associated cuts respect 0. By symmetry, it is enough to
show that X respects fl. Let q be any wire in 0, let " and i be distinct lifts of 77in
the same branch of f2, and suppose that q cuts 5 . We must show that the terminals
of iT lie on the same side of 5. I break the analysis into two cases.

(1) Suppose first that ' is not in the branch of a. It cannot be /3, because 3
does not cut j. Hence q cannot intersect /3, a, or F (since r is clean). The
terminals of " must therefore b1 in the scraps A and E of Figure 5d-1. This
means i" cuts the link a * a,:, whose projection is an associated cut of a,
and therefore respects fl (since a does). Hence the terminals of i' must lie
on the same side of &* a,:l; either they both lie in A or both lie in E. In
either case, they are on the same side of -.

(2) Suppose now that i" is in the branch of a. Since a cuts x, we may assume
that is a. Then q' cannot intersect a, 0, or F. Furthermore, since o

* respects fl, the lift i7 cannot cut either a * a. or o * a,,:,. It follows that
the terminals of i' both intersect one of the five scraps A, B, C, D, and E.
Hence q does not cut . For ij to share a terminal with , it would have to
share a terminal either with 5(0) or with /. Then a would be part of the

*branch containing either a(0) or a terminal of /f. The former option is ruled
out because & is nondegenerate; the latter option is ruled out because F is

nondegenerate.
Thus X respects 11, and the proof is complete. 13

Lemma 5d.2 represents the peak of technical difficulty in the entire thesis. It
brings together all the concepts we have been studying: respect, degeneracy, safety,
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struts, and more. There are some formidable foothills ahead, but if you have made
it this far, you should be able to surmount them.

The extents of details

Proposition 5d.4 puts Lemmas 5d.1 and 5d.2 together to show that ideal wires
have disjoint extents. It also shows that if two fringes in different articles have
overlapping extents, then the design admits a major cut that is straight and unsafe;
and if a wire's extent overlaps with that of a fringe other than one of its terminals,
then the design contains a major cut or nondegenerate half-cut that is straight and
unsafe. Neither of these things can happen in an ideal design. First we prove the
most basic of these results.

Lemma 5d.3. If two fringes in a design have overlapping extents, then the
design admits an unsafe, straight, nonempty cut. The cut is also nondegenerate if
the fringes lie in different articles.

Proof. Let Q be an ideal design on the sheet S. Let A and B be two different
fringes of S, and suppose their extents overlap. Choose points a E A and b E B to
minimize Ila - bl, and o be the straight path a c, b. Then we have

Ilall < width(A)/2 + width(B)/2 (5-6)

because the extents of A and B intersect. Neither A nor B touches Mid a. If no
other fringes of S do, then a is the desired straight cut. it is n,,.ompty because
A :A B, unsafe because inequality (5-6) implies cap(o) < 0, and nondegenerate if
A and B lie in different articles.

Now suppose a intersects a fringe C {A,B}. We replace a by a shorter
path r with the same properties. By inequality (5-6), the set Im a is contained in
the union of the extents of A and B. Hence for some D E {A, B} the fringe C

lies within width(D)/2 units of D. Let r be the shortest subpath of a' that runs
from D to C. Then we have the analogue of inequality (5-6) for 7, namely Iiri] <
width(D)/2 + width(C)/2. Moreover, we may assume that C and D lie in different
articles if A and B do. For if C and A are fringes of the same article, namely the
terminals of some wire, then they have the same width, and we may choose D = B.

Similarly, if C and B fall in the same article, we may choose D = A. Since 7
intersects fewer fringes than a, the lemma follows by induction on this quantity. 0

Now for the real result.

Proposition 5d.4. The articles of an ideal design have disjoint extents.

Proof. Let f/ be an ideal design on the sheet S. Let A and B be two different
details of fQ, and assume they lie in different articles of Q1. We say that A and B are
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too close if the distance between them (measured in the wiring norm) is less than
width(A)/2 + width(B)/2. If A and B have overlapping extents, then A and B are
too close. Supposing that A and B are too close, we derive a contradiction. Let d
denote width(A)/2 + width(B)/2.

Case 1. Suppose that A and B are features. Then by Lemma 5d.3, the design
1 has an unsafe, straight, nonempty, nondegenerate cut. Since a nonempty and
nondegenerate cut is major, this cut makes fl unsafe.

Case 2. Let A be a feature and B a wire w that does not touch A. Let a be a
minimum-length linear path from A to B; say a(1) = w(t). We have 11il < d. We
show that a' contains an unsafe straight cut or an unsafe straight half-cut for W. In
either case, Q cannot be an ideal design. If no fringe of S touches a(1) or the middle
of a, then a is a half-cut for w at t; it is nondegenerate because A is not a terminal
of w, and it is unsafe because hlall < d implies cap(a) < 0. Suppose instead that a
fringe C touches a(1) or Mid a. If C is a terminal of a, then A and C are too close
(because width(C) > width(wo)) and Case 1 applies. Otherwise C is either too close
to A or too close to w, and we use the same type of irduction as in Case 1.

Case 3. The interesting case is when A and B are both wires. We apply
Lemma 5d.1 to these wires, call them v and w. If some endpoint of v or w lies
within d units of the other wire, then so does the terminal containing that end-
point, and we reduce to the previous case. Otherwise, there are points s, t E (0, 1)
such that Ilv(s) - w(t)ll < d, and either v turns away from w(t) at s, or w turns
away from v(s) at t. By symmetry, we may assume the former.

Now we apply Lemma 5d.2. Let a be a strut for v at s; there must be one
because v is taut. Let r be the straight mid-cut from v(s) to w(t). This path does
not intersect any fringe of S, or we could reduce to the previous case. Similarly, we
can assume that Mid r intersects no wire in Q. Thus T is clean in f1, and because it
connects different wires in a design, r is nondegenerate. Finally, a,*r crosses over v
at v(s), because v turns away from r(1) at s, but v turns toward a(0) at s. Applying
Lemma 5d.2 to v, w, a, and r, we see that IrJh > d, contrary to assumption. 0

5E. Ideal Wires Are Self-Avoiding
This section completes the proof that ideal designs are proper by showing that the

wires of ideal designs are self-avoiding. The technique we use involves some fairly

messy geometry, illustrated in Figure 5e-1. Beginning with a divisive article, we
increase its width until just before its extent divides the sheet. At this point the
frontier of its extent consists of two or more polygons linked by simple paths. One
Of these polygons surrounds the others, and one of the inner polygons surrounds an
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inner fringe of the sheet. Across one of the simple paths we find an unsafe, straight,
nondegenerate subcut. If the article contains a wire, and the subcut is a cut, we
prove the cut is major.

.......................................... 1

Figure 5e-1. When an article is divisive. The shaded region represents a frac-
tional extent of the article C, just before it divides the sheet by separating the
fringes X and Y. It intersects no articles except C. Because this region has a
vertex at x, and includes points on both sides of the path a, the dark points and
line segments (at right) must contain points of C. Hence there is a bent subcut 17
for C which, together with C, separates X from Y. We use this fact to show that
q7 is nondegenerate. Also 17 is unsafe; its capacity is negative. The straight subcut
oc has the same properties.

Fractional extents

To study self-avoidance, we adjust'the widths of design details and examine the
moment when an article first fails to self-avoid. Let C be any article of a desi/p,
and suppose 6 > 0. The 8-extent of C, denoted T6(C), is the extent that C would
have if the widths of its details were multiplied by 6. (By convention, the 0-extent
of C is the intersection of T6(C) for 6 > 0.) The set Ts(C) is open unless 6 = 0.
Since T(C) is just the extent of C, the article C is self-avoiding if and only if T1(C)
divides the sheet.

* Given a divisive article C, we find a critical value of b for which the 6-territory
of C looks like that in Figure 5e-1. The following lemma assists the search for a
critical value of 6.

Lemma 5e.1. Let Do Q D, 2 D2 D ... be a descending chain of closed,
connected subsets of Rt. If Do - ni Di is bounded, then ni Di is connected.

Proof. Set D = fl, 0 Di, and suppose that D is not connected. Let C and D - C
be nonempty sets that are both open and closed in D. Since D is closed, they
are rlosed in R". Because R" is normal, there are disjoint open sets U and V
, retaining C and D - C, respectively. Write X = Do - (UU V). Then X is closed,
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Routing a Safe Design Chapter 5

and because X C Do - D, it is also bounded. Hence X is compact. Now each
of the connected sets Di contains points of U and V, and hence must also contain
points of X. It follows that the collection of closed sets {Di n X} satisfies the finite
intersection condition, because if M is any finite subset of the natural numbers, it
has a maximum value m, and

N(D, nX) = DnX,
iEM

which is nonempty. Because X is compact, the intersection N,(D, n X) must be

nonempty. But that intersection is precisely D n X, which is empty. This contra-

diction establishes the lemma. E3

And the next lemma gives us a value b with the desired properties.

Lemma 5e.2. If an article C of an ideal design is divisive, then there exists a
number 6 E (0, 1) such that T6(C) does not divide the sheet, but its closure does.

* 'Proof. Let S be the sheet. By Proposition 5d.3, the extent T(C) of C does not
intersect any fringes except those in C. For C not to self-avoid means that Ti(C)
divides S. On the other hand, T,(C) does not divide S for sufficiently small t.
Hence the quantity

6 = inf{ f > 0: T.(C) divides S }

is positive, and at most 1.
We shows that 6 < 1 by proving that T6(C) does not divide S. For e < 6, the

set T,(C) does not divide S, and hence all the fringes of S except those in C lie in
a single component F, of its complement. Furthermore, for n > 2 the sets Fb-6/,

form a de3cending chain of connected closed sets. Call their intersection F6. If C
is not the outer fringe of S, then the complement of F6 is bounded; otherwise F612

is bounded, and in either case Lemma 5e.1 applies. It shows that F6 is connected.
Since U,,>2 T6-61,(C) = T6(C), we have F6 C R 2 - T6(C). And since F6 contains
all the fringes of S except those in C, it follows that T6(C) does not divide S.

N-w we indicate why C7 T6 (C) divides the sheet S. Write V = R' - C T6 (C).
Then V is open, and because the wiring norm is polygonal, V is bounded by finitely
many line segments. If all fringes except those in C lay in the same component
of V. we could connect them by paths in V. The images of these paths. being
compact, would lie some finite distance from Ci T6 . Hence they would also exist in
R' - T6+,(C) for all sufficiently small f. But by the definition of 6, the set T6+,(C)

divides S for arbitrarily small positive values of I. 03

Deriving unsafe subcuts

Next we need a condition for a subcut to be nondegenerate. If a is any subcut
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whose endpoints lie in the same article C, a completion of a is any loop a*x where
r is a path in C.

Lemma 5e.3. Let a be a degenerate subcut in the design f. If the endpoints
of a lie in an article C of l, then no simple completion of a separates two fringes
that are not part of C.

Proof. Because a is degenerate, there is a path T E [a]p that lies entirely in C.

This is true by definition if a is a cut. If a is a half-cut for w at t, then a * Wt:j

is path-homotopic to a path r in C. It follows from the groupoid properties of
concatenation (Section 2A) that a "p r * wl:t, and the right-hand path lies in C.
A similar argument applies to mid-cuts.

Let a*K be any simple completion of a. Then a*. and *r. are path-homotopic,
and enclose the same fringes. By Proposition 2c.5, the fringes enclosed by r * K are
precisely those lying inside a * K. Now r * K lies entirely in C. If C contains a wire
of Q. then it comprises two inner fringes of S connected by a thread. Then the
other fringes of S all lie in the unbounded component of R' - Im(r* K), whence by
Proposition 2c.5, the loop r * K does not enclose any of those fringes. Or if C is a
single fringe, then r * . may enclose C, or no fringes, or all the fringes but C (if C
is the outer fringe). In no case are there fringes X and Y not in C such that r * K

encloses X but not Y. D

The last lemma of the chapter outlines the geometric construction suggested by
Figure 5e-1.

Lemma 5e.4. If C is a divisive article of an ideal design l, then it has a clean,
straight, unsafe, nondegenerate subcut K. Furthermore, if C includes a wire , and
if K Is a mid-cut between at s and at t, then turns away from (t) at s.

Proof. Let S be the sheet of fl. First apply Lemma 5e.2 to the article C, and let
E (0, 1) be the quantity defined by that lemma. Write D for the open set T6(C).

Because 0 is ideal and D C TI(C), Proposition 5d.4 implies that neither D nor
(7 D intersects any fringes of S other than those in C. Because C/D divides S,
there are two fringes of S that fall in different components of R2 - C7 D. Call these
fringes X and Y. Since D does not divide S, there is a simple path a from X to
Y in R' - D. (The set R' - D is locally path-connected, being a finite union of
polygons and line segments.) Clearly a must enter C7 D - D = Fr D. Let x be the
point of R2 where a first enters Fr D. Figure 5e-I pictures the situation near x.
The shaded region represents D.

We find a straight subcut r through x. Because x lies in Fr D, there is a point p
of C such that 11p - x:l = b. width(p)/2, where by width(p) we mean the width of
the detail containing p. In fact, there must be points of this sort on both sides of a;
call them p and q. Then p t, x and q t, x contact a from both sides, and the bent
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path 77 = (p c- x) * (x . q) intersects C only at its endpoints; its middle lies in D. Let
K be the linear path p c q. By the triangle inequality we have

11IIll _ 6. width(p)/2 + 6. width(q)/2. (5-7)

I claim that Mid x intersects no article of 0l. We already know that Mid K is disjoint
from C, and if any other article of 91 touched Im r, then its extent would overlap that
of C, contradicting Proposition 5d.4. So x is a clean subcut in S, and its capacity
is negative by inequality (5-7), since 6 < 1. Hence x is unsafe. Furthermore, it is
apparent from the geometry of Figure 5e-i that if both endpoints of K lie in the
middle of some wire E fl, then at one of those two points, turns away from the
other.

It remains to prove that x is nondegenerate. Choose a simple loop * -y that is
a completion of K. I claim that r/*-t, which is also simple loop, separates X from Y.
For a crosses over q/ * - at the point x and nowhere else. Since X and Y lie at
the endpoints of a and do not intersect Im 77 or the article C that contains Im -,Ii they lie in different components of R2 - Im(i7 *y). Now consider X * -f. All points
within the triangle Apqx are within 6. width(p)/2 units of p or within 6. width(q)/2
units of q, and hence neither X nor Y intersects Apqx or its inside. So x * also
separates X from Y, and neither X nor Y is part of C. Hence by Lemma 5e.3, the
subcut K is nondegenerate in ft. E3

,' Conclusions

A One consequence of Lemma 5e.4 is that every divisive fringe has an unsafe,

straight, nondegenerate cut. Another is that ideal wires are self-avoiding. The
proof simply combines Lemma 5e.4 with Lemma 5d.2 from the preceding section.

Proposition 5e.5. Ideal wires are self-avoiding.

Proof. Let fQ be an ideal design on the sheet S, and let w be a wire in r?. Suppose
w is not self-avoiding, meaning that its article C is divisive. Apply Lemma 5e.4
to C, and let x be the resulting subcut for w; it is clean, straight, unsafe, and
nondegenerate. There are three cases: x can be a cut, a half-cut, or a mid-cut.
If K is a cut, then because K is straight and terminals are convex, K must connect
the terminals of w. Hence x is a nonempty, and therefore major, unsafe straight
cut of Q, contradicting the safety of fl. If K is a half-cut, then w is not evasive,
contradicting the assumption that Q1 is ideal. The remaining case is the interesting
one.

Suppose that K is a mid-cut between w at s and w at t. By Lemma 5e.4, w turns
away from w(t) at s. Because w is taut, it has a strut or at s. We apply Lemma 5d.2
with w representing both wires and with r in place of r-. The conditions are easily
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checked: Lemma 5e.4 says that K is clean, straight, and nondegenerate; and a * r
crosses over w at a(1) because w turns toward a(O) but away from ic(1) at w(s).
The conclusion of Lemma 5d.2 is that "IIxJ _ width(w). But Lemma 5e.4 says that
e is unsafe, and since flow(, fl) = 0, this means cap(tc) < 0. But the capacity

of x is just IIxJJ - width(w), which we have just shown to be nonnegative. This
contradiction completes the proof. D

Together, Propositions 5e.5 and 5d.4 show that ideal designs are proper. And
since every safe design has an ideal embedding, by Proposition 5b.3 and Corol-
lary 5c.4, we obtain the following result.

Theorem 5e.6. Every ideal design is proper, and every safe design is routable.

€

2
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Chapter 6

Routability Conditions for Designs

Chapter 5 gives conditions for a design to be routable. It shows, via the construction
of an ideal embedding of a safe design, that every design whose major straight cuts
are safe is routable. In addition, it provides conditions under which the fringes of
a design have further desirable properties. Lemma 5d.3 shows that if all nonempty
straight cuts of a design are safe, then no two fringes in the design have overlapping
extents. Lemma 5e.4 implies that if all nondegenerate straight cuts of a design are
safe, then no fringe in that design is divisive.

The present chapter derives converses to these results. It gives two conditions
under which a design is improper: first, that it contain an unsafe major straight cut;
and second, if its major straight cuts are safe, that one of its wires be shorter than
its ideal embedding. These results, together with Theorem 5e.6, imply the design
routability theorem and the design routing theorem, respectively. Section 6A also
deduces the effect of an unsafe straight cut on a design. If the cut is empty but
nondegenerate, then the design contains a divisive fringe. If the cut is degenerate but
nonempty, then the terminals of some wire in the design have overlapping extents.
Thus we obtain complete characterizations of routable designs, designs with divisive
fringes, and designs with wires whose terminals are too close, in terms of the safety
of straight cuts. These results are summarized in Section 6C.

Having established the design routability theorem, we proceed in Section 6D to
strengthen it. Given a sheet, we find small sets of straight cuts such that, if each cut
is either safe or minor in a certain design, then that design is routable. (Actually, we
present techniques that would generate such sets if applied to the standard design
model. We work in a slightly modifed model, and so the cut sets we find have
slightly different properties.) Such a set of cuts is called decisive because one can
decide whether a design is routable based only on the relationship of these cuts to
that design. Every sheet admits a decisive cut set whose cardinality is at most the
square of the number of fringe edges, and is possibly much smaller.
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6A. Unsafe Designs Are Unroutable

The title of this section is also the content of its main result. We also prove two
other useful facts here. First, every route that has an unsafe, semisimple half-cut
is infeasible. Second, every design that admits an unsafe, nonempty, degenerate,
simple cut includes a wire whose terminals have overlapping extents. These results
are quite easy compared to those of the preceding chapter; the conceptual machinery
we have built up comes through nicely.

One's intuitive picture of unsafe cuts and subcuts should resemble Figure 6a-1.
If a subcut is unsafe in a design, then there is no room for the wiring in the design
to fit across the it. In any embedding of the design, then, the subcut will have
necessary crossings that come too close to one another or to the subcut's endpoints.
In other words, one of its subpaths will be a subcut with negative capacity. If
the endpoints of this subpath belong to different wires, or to a wire and a fringe
other than its terminals, then these two details of the embedding have overlapping
extents. If the endpoints of the subpath belong to the same wire, then the loop of
wire between the two crossings must surround some fringe, or else those crossings
could be removed. Consequently the extent of the wire divides the sheet, and hence
that wire is not self-avoiding. If the endpoints of the subpath belong to fringes
in different articles, then the extents of those articles overlap. In each case the
embedded design is improper.

Of course, the actual situation is somewhat more complicated. A degenerate
subcut that is not simple may have positive flow and any capacity whatsoever, and
this does not mean the design is unroutable, because the endpoints and necessary
crossings of this cut all involve details in the same article. For the same reason, it
matters little when an empty cut is unsafe. Since it has no necessary crossings, and
its endpoints lie on the same fringe, its lack of safety does not imply that any two
details have intersecting extents. These technical issues are fairly easy to take into
account. The results bear out our intuition: any design that contains an unsafe,
major, simple cut, or an unsafe, semisimple half-cut, is improper.

Subcuts with negative capacity

As explained in Figure 6a-l, we find within an unsafe subcut a smaller subcut
whose capacity is negative. If the original subcut is sufficiently nice (nondegener-
ate and respectful of the design), then the smaller subcut will be nondegenerate.
Suppose now that its endpoints fall in a single article. Nondegeneracy means it is
not path-homotopic to a path in that article. We can infer that the subcut and its
article divide the sheet.

Lemma 6a.1. Let f0 be a design on the sheet S, and let r be a subcut with
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Figure 6a-1. An unsafe half-cut. The half-link a shown at left is an unsafe,
nondegenerate, respectful half-cut for the wire w. The right-hand picture is the
same, but it shows the extents of certain fringes and wires. These extents (shaded

O regions) overfill the space available in Im a. The excess congestion of a manifests
itself in the nondegenerate subcuts r and r', which have negative capacity because
they lie entirely in the extents of their endpoints. The half-cut r shows that the
wire v is too close to the terminal of a; the mid-cut r' shows that w is not self-
avoiding.

endpoints in an article C of Q. If C U Im r does not divide S, then r is degenerate.

Proof. Let S be the sheet, and let T denote the union of the fringes in S - C.
Suppose T lies in a single component of R' - C - Im r. Because T and C U Im -r
are compact, there is a positive distance between them. Find a simple loop A that
separates C U Im r from T. The cases T C inside(A) and T C outstde(A) are
equivalent, so we assume T C outstde(A).

, a

Figure 6a-2. Retracting a degenerate subcut. If a subcut (striped path) and its
article (' do not divide the sheet, then the subcut is path-homotopic to a path
an C. We take the loop A to separate C and the subcut from the other fringes.
Then we construct a deformation retraction of S fl rnside(A) onto C. There are
two cases, distinguished by whether or not C includes a wire.
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Figure 6a-3. A nondegenerate cut whose
capacity is negative. If an empty, nonde-D generate cut is unsafe, like the cut X shown

X -Y here, then the extent E of its terminal ei-
ther divides the sheet (as here) or intersects

Ea fringe in another article.

We assume the component C contains a wire w of (I, because this case is the
harder one. Let A and B denote the terminals of w, so that C is the article A U B U
Im L. Construct a simple loop p within inside(A) such that CUinside(A)Uinside(B)
is a deformation retract of the set R 2 - outside(p). Then we have

R 2 - outside(A) - inside(p) g S,

and by Proposition 2c.4, this annular region has Im p as a deformation retract.
Combining our two deformation retractions, we obtain a deformation retraction H
of the set

R 2 - outside(A) - (inside(A) U inside(B)),

which is S - outside(A), onto C.
Now S - outside()) contains the image of r, and the endpoints of r lie in C.

Hence the map H(r( • ), • ) is a path homotopy between r and a path in C. It follows
that T is degenerate. E3

If a subcut with negative capacity has its endpoints in different articles, then
as the next lemma shows, those articles have overlapping extents. Combining this
fact with Lemma 6a.1, we can describe the consequences of a design having a non-
degenerate subcut of negative capacity.

Lemma 6a.2. If a is a nondegenerate subcut in a design Q and cap(a) < 0,
then either Q is improper or the article containing the endpoints of a is divisive.

Proof. Let A and B be the details of fl that contain the endpoints of a. We show
that A and B have overlapping extents. The definition of capacity says

cap(a) = lall - width(A)/2 - width(B)/2,

and since cap(a) < 0, the distance between A and B, which is at most 11all, is less
6 than wdth(A)/2+ width(B)/2. Since the extent of A is the set of points in R 2 whose

distance from A is less than width(A)/2, and similarly for B, the extents of A and
B intersect. Moreover, for every point (7(t) we have either Ilao:tj < width(A)/2 or

IIat:1II < width(B)/2, and therefore Ima lies within the union of the extents of A
and B.
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If the details A and B fall in different articles of f1, then the extents of these
articles overlap, and Q is improper. So assume the endpoints of a lie in a single
article C. Let S be the sheet of fQ. Since a is nondegenerate, Lemma 6a.1 implies
that some two fringes of S not in C are separated by C U Im a. If either of these
fringes intersects the extent E of C, then again fQ is improper. Otherwise they are
separated by E, because E includes both C and Ima. (Compare 6a-3, or r' in
Figure 6a-1.) This means that E divides S. In other words, C is divisive. 1

One useful consequence of Lemma 6a.2 is that an unsafe, empty, nondegenerate
cut in a proper design identifies its terminal as divisive. Figure 6a-3 illustrates this
fact. For if an empty cut is unsafe, then its capacity is less than its flow, which is
zero. And if, in addition, it is nondegenerate, then Lemma 6a.2 applies.

Unsafe subcuts have nearby crossings

The main argument of this section shows that a sufficiently nice unsafe subcut
contains a nondegenerate subcut of negative capacity. And unless the original sub-
cut is an empty cut, the smaller subcut will involve a wire. Lemma 6a.2 then allows
us to conclude that the design is improper.

Proposition 6a.3. Let a be a nondegenerate subcut in a design fl, and assume
o. respects fl. If ar is unsafe in fS, then either f is improper or a is empty in Q.

Proof. First we lift everything to the blanket. Let a be any lift of a. If a is a cut,
put ; =. If a is a half-cut for the wire w at t, then lift w to a simple link D with

(t) = a(l), and let j E [a* t:,] be a simple link. If a is a mid-cut between v
a t s and w at t, then let U and Z be lifts of v and w satisfying 9(s) = &(0) and
, (t) = &(I), and let j E [i,:o * & * Zt:] be a simple link. The projection j of ) is

* an associated cut of a, and we have flow(a, Q) = flow(x, fQ) by definition.
Next we examine the necessary crossings of a. For each wire 17 in Q, the quantity

uind(X, 7) is the number of lifts q'of r that cut j. Let q be such a lift. Both i; and 2,
if they are defined, share terminals with j, so neither can equal 4. And because 0,

- respects Q1, the lift 4" cannot fall in the same branch of fl with the endpoints of 5.
In particular, 4 does not cross either v or w, and hence crosses &. Choose for 4 a
crossing with 2. Again becaue a respects Q, two lifts of wires in Q, if they both

:I cut j, lie in different branches of Q'. Hence all these crossings of & fall in different
branches of Ql. Each crossing has an associated width, namely width(r7 ), and the
sum of these widths is flow(X, Q) by definition.

Now we show that two crossings or endpoints of i occur nearby. To each crossing
and endpoint we associate a section of Im a, or equivalently, of Im a. Let Do and D,
denote the details of f containing a(O) and a(1), respectively. For e E {0, 11, we
assign to a(e) the set of points a(x) such that 11a,:zl < width(D,)12. If (c,r) is a
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Section 6A Unsafe Designs Are Unroutable

all these fringes are in different branches

Z(s) d y ix0

Figure 6a-4. Contributions to the flow across a respectful subcut. Here & lifts a
mid-cut a between v at s and w at t, and U and Z are lifts of v and w that reflect
the crossings (0, s) and (1, t). The links that cut are the liftings of wires in the
design Q that contribute to the flow across a. They all cross &, and together with
i3 and Z, no two lie it, the same branch of fl. To each crossing and endpoint of

we allocate a section of Im F according to the width of that wire. When two
of these points have overlapping sections, the subpath of a between them (shown
here as Fr:,) lifts a nondegenerate subcut of negative capacity.

crossing of a by a lift q of q7 that cuts j , then we assign to a(c) the set of points a(x)
such that IIac:zI < width(?)/2. The combined length of all these sections of o is

L = flow(x, fZ) + width(Do)/2 + width(D1 )/2.

Because a is unsafe, we have flow(x, fl) = flow(a, f) > cap(a, fl), and hence

L > cap(a, fl) + width(Do)/2 + width(D 1)/2 = Iall.

Therefore two of the sections of a overlap: there are details X and Y of (1, containing
a(x) and a(y) respectively, such that 'a:] < width(X)/2+ width(Y)/2. Moreover,
the points a(x) and a(y) lie in different branches of S1. Unless a has zero flow in Q,
we can also assume that a(x) and u(y) are not both endpoints of a.

We conclude that o,, is a nondegenerate subcut of Q?, and that cap(a._:y) < 0.
Applying Lemma 6f.2, it follows either that 11 is improper, or that a(x) and a(y)I. lie in the same article C of 0, and that the article C is divisive. In the latter case,
Q is still improper unless C is a fringe. And this implies that a,:, is a cut with one
terminal, whence a(x) and a(y) are the endpoints of a, and thence flow(a, fl) = 0.
Therefore a is an empty cut, or Q is improper. E3

Two corollaries follow immediately from Proposition 6a.3. First, we apply the
proposition to semisimple half-cuts. The result justifies our concern with evasive
and ideal wires.
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Corollary 6a.4. Let v embed a wire w in a design f. If v has a half-cut that

is unsafe and semisimple in S1, then v is not a feasible route of w.

Proof. Let o be an unsafe semisimple half-cut for v at t, and let T E v be an

embedding of fl. Then a is also a sernisimple half-cut in T, and flow(o, T) 

flow(a, Q). Hence o is unsafe in T. Because o is semisimple in T, Proposition 4e.6
proves that a is nondegenerate and respects T. Now Proposition 6a.3 applied to ar

shows that the design T is improper. Thus v is not a feasible embedding of w. r3

Second, we apply Proposition 6a.3 to major simple cuts. The result is the easy

direction of the design routability theorem.

Theorem 6a.5. Every unsafe design is unroutable.

Proof. Let fl be an unsafe design. Then f0 has an unsafe major straight cut X.
Being major, X is nondegenerate and nonempty in fl. Let T be any embedding
of f?. Since flow, degeneracy, and emptiness are unaffected by link homotopy, X is
an unsafe, nondegenerate, nonempty cut for T. Because X is straight, it respects T
by Proposition 4e.2. Now apply Proposition 6a.3 to X and T. It says that either
T is improper or else X is empty in T. Since X is nonempty, T must be improper.
Thus every embedding of !Q is improper, which means that fl is unroutable. E3

Degenerate cuts

For completeness, we consider the effects of degenerate cuts, as well as nonde-
generate cuts, on the properties of a design.

Lemma 6a.6. A design that contains an unsafe, nonempty, degenerate, simple
cut includes a wire whose terminals have overlapping extents.

Proof. Let f2 be a design, and let X be a cut with the listed properties. Because X
is simple and degenerate ir the design S1, Lemma 4e.3 implies flow(X, fl) = 0. And
since X is nonempty in f2, this means X has two terminals. These terminals lie in
the same article because X is degenerate. Therefore they are the terminals of a wire

in Q; call them A and B. Since ) is unsafe, we have

0 = flow(x, f) > cap(x, f) = IlXll- width(A)/2 - width(B)/2.

Thus IJJXJ < width(A)/2+ width(B)/2, and it follows that A and B have overlapping
extents. 03
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6B. Ideal Embeddings Have Optimal Length

Theorem 5e.6, which says that ideal designs are proper, established the first part
of the design routing theorem. This section proves the remaining part: among the
proper embeddings of a routable design, the ideal design is best, in the sense that it
minimizes the length of every wire. Let fl be a safe design, and let ,; be a wire in Q
Recall that an embedding v of w is feasible if v is part of a proper embedding T
of f). By Proposition 5a.9, w has an ideal embedding p; by Proposition 5c.4, p is
part of a ideal design that is an embedding of P. And by Theorem 5e.6, this ide&'
design is proper. Therefore p is a feasible embedding of,,. We prove that no feasible
embedding of w has smaller euclidean arc length than p.

The struts for an ideal wire

As usual, we will study embeddings of .; by lifting them. Let S he the sheet
of 0, and let M be its blanket. Lift , Go any link Z, and let Z C M be the union.
of the forbidden zones for Z. Let E PIlL be a lift of p Because idesl emnbeddingsk
are evasive, we have Im,5 tg M - Z. Let v' be any feasible embedding of - nd le,
Zz E [Z]L be a lift of v. Then i& has the following propertv

Claim 6b. I. If a Is a strut for p at a, and a is a lift of cy satisfving C-9 ,

then Z,' cannot intersect a(z) for anY x E lO, 1)
(Actually, a can be any rigid cut or half-cut for p

Proof. Because struts are nondegenerate. the link i~cannot inter '

&(O) lies on a fringe that is not a terminal of i Supposing that ,r- r
for some x E (0. 1). we prove that v has an unsafe sezmsimnpie half ctut If ,X*
Corollary 6a.4 shows that L, is not a feasible embedding of.

00) CA)Figure Ob-1. Subliznks of strurs ar, em
mimple Here the cut ey is & strut fo? '

ideal wir - The half-cut &L foT 'he

v E ~'jis akin to the straight ha~f i;
.. and hence is semaisimpi.

000

Suppose first that a is not 0 or 1. Then oo. is a half-cut for tat r hat is aA.r
but shorter than. the rigid half-cut a! for p at j, Hence 0'o., is an unsafe half-cut !0'

i7. Furthermore, since a is semisimple (Proposition 5b.4), so is c"o, Now nupps
that s is 0 or 1. Then 0'o:, is a half-cut for v at t that has a as an associated cu!
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ilght modification of a i see Figure 6b- 11 produces a straight half-cut r for p which
'efre. ,rc is sernisimple It follows that ao , is semisimple, and so its associated cut

T IleSpectq fl rherefore the flow across ao, is the flow across a, by Lemma 4d.3.
,, I is. marglnria and r',, is even shorter, 0 ., is unsafe. This completes the

" prf 0

- e, ,a re, ,stClaim 6b I as f,,Iiows Let S be a set of struts for p, one for each
r.i:t , O i urtis. and let b we the appropriate lifts of the struts in E. Define

*., .r set \ ,t : ,

", 4:A iste rnihedding of - its lift u E [:I]L satisfies IM i C M - X.

:.,.:" At t I. Is ",rn. the %et V contains points arbitrarily close to (t)

'A; * .war, .hi (h ) turns at I

0i,-,tkinO( a feapible wire

A. "i , , "'t a ',s, ;ie embedding is different fiom the lifting 'of
tic .ev P. &v ,tink it down to P without letting it touch X.

, .. , ' *- .'. ,. * , :eore fib 2, the main result of this section.

•. " -a- ..... ,'N4 i I A ,rr in a safe design, we apply a sequence of
k ,-e .r eth Eventually it coincides with the

I . &. 15'- ' I he prof are reminiscent of Lemma.s 3d.5 and 3d.6,

T h,,rem sib 2 'w , i'ea-: f-a. ebedding of a wire,.. in a safe design. Then
- ....... ,i: a:, ,irtt aimmg &1 feasible embeddings of,;.

... ' .. . "t , A feasible embedding of , and find a transfor-

, " a: m,-. "i,.er" to without increasing its length. It
. a: t lte tOequece 4 these transformations takes £; to '. The

,,..:' A, ',,' :Ivprs -epiacing a subpath of i by a straight path,

A: , !, e nt. I ollit ides with . At each stage the path

. a .- ' . : :, \" \ .,. . link-homotplc to ,,' 1*)

A -"A A , "' los,% of genrrali~t that t, is canonical.

.',, . . '. V , ,, Ier Vor ;iippose Ira V 1m = L. Then
,, , eee are ,he only poi-ts at which L intersects

. .,l are sm.)re. their arc lengths are both equal

", . * ."~t,%f 'tie imr iterments that make up L. Call this length
,- se 'L L%':;rT1pt iii at soie point U(s) = (t) where s - t. Assume
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Section 6B Ideal Embeddings Have Optimal Length

s < t. Because iY and p are canonical, V-o:. * Pt:i is a path from W(O) to W(1) whose
length is (1 + s - t) . 1, and therefore less than 1. And because its image is that of
p, the route vo:0 * pt.. is evasive. This contradicts the assumption that p is ideal.
Therefore Im ' and Im U differ, and consequently W-1 (Im U) is not all of I. We
discriminate on the number of intervals of " 1 (Im v).

Case I. Suppose first that V-1 (Imi) consists of two or more intervals. Then
there are distinct crossings (a, a) and (b, t) of by i7 such that the paths Pa:b and
VZ,:t intersect only at their endpoints. We may also assume that the middle of W,,:b

is free of crossings by 9Y. Let A be the simple loop P,:b * -t.,. By Lemma 3c.5, the
inside component N of M - Im A contains no fringes. Hence it contains no points
of X, because every connected component of X includes a point on a fringe. Thus
if W turns at a point c E (a, b), it turns away from N.

If W'a:b is straight, we can simply replace ;,:t by the shorter path &b, and 9 will
still satisfy condition (*). Otherwise, since W' is piecewise straight, it turns at some
point c in (a, b). Choose c so that '. is straight, and extend this path into N.
Eventually it must leave N, and it cannot do so by intersecting W.:b since this path
turns only away from N. Hence there is a straight path -1 from 9(s) to some point
£(x) with z E (s, t), and Mid - C N. Replacing i7,. by -y, we make 9 shorter while
preserving (.).

..............................
(be) 0a-- x --- P Ax .... ,:

Figure 6b-2. Ideal wires are optimal: cases 1 and 2. At left, the lifting ' of the
ideal embedding and the lifting V of the other feasible embedding form a simple
loop. The inside N of this loop contains none of the forbidden points X, and Pa:b
turns only away from N. Hence we can shrink : by taking shortcuts through N
(thin lines). At right, W and U form a simple loop with the path v along the
fringe E. Neither nor v turns toward the inside N of this loop. Here we shrink
V via the shortcut -. We construct straight paths perpendicular to V (thin lines)
to show that -f is shorter than the corresponding subpath of V.

Case 2. Suppose that V-(lm v-) consists of only one interval. Then there is a
crossing (b, t) of W by 9 and a point e E {0, 1} such that the paths Pe:b and -e:.
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intersect only at ; (b) = 9'(t). We may assume that the middle of Pe:b is free of
crossings by ZY. Then the set Im Pe:b U Im 9.:t is a web of one thread, and hence its
inside N intersects no fringes except the terminal E of L that contains Z(e). As in
case 1, it follows that C1 N C M - X, and also that whenever the path W turns at
some point c E [e, b), it turns away from N at c. Let v be a simple path in E from

i(e) to W(e). Then because the projection of E to S is a convex fringe of S, the
path v only turns away from N.

Choose a point c E (e, b) such that the path ;'e:c is straight. When this path is
extended, it must eventually leave C7 N. Because v and P,:b only turn away from N,
it can only do so by intersecting ;U:t. Hence there is a straight path -y in C1N from
W(e) to some point 9'(x) with z E (e, t). We can assume that -y intersects £e:t only
at 7(1). Replacing g.:,, by -t, we obtain a new link i satisfying (*).

Now we show that -y is shorter than U.:.. Suppose first than v is straight.
Because We:b does not turn toward N, the angle formed by v *; 'at (e) is not acute.
Projecting to the sheet, the result follows by elementary geometry. Suppose instead
that v is not straight. Let vo be the first segment of v, and construct a linear path
that extends into N from vo(1), making a right angle with vo. This path must
eventually intersect Ze, at some point i(y). Let " be the linear path from vo(1) to
i(y). Again by plane geometry, r is shorter than -V,:,, so we replace the latter by
the former, and replace v by a simple path from r(O) to W(e). Continuing in this
way, we eventually reduce to the case where v is straight.

Case 3. Suppose W and 9 do not intersect at all. Then Im "WU Im 9 is a web of
two threads, and so its inside N contains no fringes. As in case 1, it follows that
Cl N C M - X and that whenever " turns at c E [0, 1], it turns away from N at
c. Let E and F be the fringes of M that contain W(0) and W'(1), respectively. Pick
a point c such that PO:c is straight, and extend it as a linear path -Y until reaching
Fr N. We must have -y(1) E F or -y(1) = ii(x) for some x. If the latter, then -Y is
shorter than go,,, and we proceed as in case 2. So assume 7(1) E F. If Y # p, then
by argument like that in case 2, - is longer than ;. So it suffices to prove that U is
at least as long as -.

Let R be the scrap of M - Im -y that contains ;U. Construct rays /0 aLnd I in R
from -y(0) and -y(1), respectively, that are tangent to the fringes E and F. Because
E and F project to convex fringes, they are convex toward N at every vertex.
Hence at the points where Po and 81 leave C7 N, they intersect 9; say i(x) E Im 1o

I .E and (i(y) E Im flu. The angle formed by 7 with 1o is not acute, else p would turn
toward N at 0. One can also check that the angle formed by 7 and P, is not acute.
By elementary geometry again, the distance between 9(x) and 9(y) is at least the
length of -f. Therefore i5 is no shorter than -f, and case 3 is complete.

Each case reduces to the previous one, except case (1), which applies only finitely
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Figure 6b-3. Ideal wires are optimal: case 3. Here the liftings 5 of the ideal
wire and V of the other feasible wire do not intersect. Their images form a web
of two threads, and can only turn away from the inside N of this web. If -f
intersects V, it shortens V, as in case 2. Otherwise, because the terminals of -Y lift
convex fringes, they make obtuse angles with -y on the side containing V. Hence
the portion of V between the paths 3o and 01 at at least as long as y, which in
turn is no shorter than .

many times. Hence any feasible embedding v of w has a lift 9 that can be reduced
to ;Y by a sequence of transformations, each of which reduces or preserves the length
of i. Since the length of a path in M is by definition the length of its projection to
S, this shows that p has minimum length among all feasible embeddings of w. E3

Uniqueness of ideal embeddings

The proof of Theorem 6b.2 also Pllows us to characterize the situations in which
p is the unique minimum-length feasible embedding. In cases 1 and 2, the trans-
formation applied to 9 actually reduces its length. Hence if v is to have the same
length as p, its lift 9 must fall into case 3, that is, it cannot intersect ;. Further-
more, the path -f constructed in case 3 must be equal to '; the paths 00 and 3I
must be perpendicular to t; their intersections with i must lie on terminals of v;
and i" must be straight. From this we conclude that W' and 93 are straight links that
intersect their terminals perpendicularly, as shown in Figure 6b-4.

Figure Bb-4. An ideal embedding that is
p" not unique. This figure shows the only sit-

............ uation in which a wire (w) can have more

than one ideal embedding (p, p', etc.).........
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6C. Summary of Design Theorems

Before moving on, we summarize the goals we have attained. This section collects
the main theorems that hold in the design model and in slight modifications of that
model. One of these modifications is necessary to make the sketch and design models
correspond: the addition of the requirement that the terminals of a feasible wire
have disjoint extents. We prove that the design routing and routability theorems
continue to hold when this change is made, provided that a corresponding change
is made in the definition of a safe design.

Two results stand out. First, Theorems 5e.6 and 6a.5 together characterize the
routable designs.

Theorem 6c.1. (Design Routability Theorem) Every safe design is routable,
and every routable design is safe. 13

Second, Theorems 5e.6 and 6b.2 combine to characterize the optimal embedding of
a safe design.

Theorem 6c.2. (Design Routing Theorem) The ideal embeddings of the wires
in a safe design form a proper design, and they have minimal euclidean arc length
among all feasible embeddings of those wires. 03

Other models

Chapters 5 and 6 have been careful to consider the effects of minor unsafe cuts
as well as major ones. As a result, we can now understand the effects of changing
slightly the definitions of 'proper' and 'safe' designs. The results are summarized in
Table 6c-1 below.

Table 6c-1 claims that the design routability theorem continues to hold in three
situations. The first occurs when we strengthen the definition of a proper design to
require that fringes be nondivisive, and define safe designs to be those whose non-
degenerate straight cuts are safe. (Lemma 5e.4 shows that a design with a divisive
fringe has an unsafe, nondegenerate, straight cut; Lemma 6a.2 shows that a design
with an unsafe, empty, nondegenerate, straight cut has a divisive fringe, or is oth-

%- erwise improper.) The second occurs when we strengthen the definition of a proper
pop- design to require that no wire's terminals have overlapping extents, and define safe

designs to be those whose nonempty straight cuts are safe. (Lemma 5d.3 shows
that a design with a wire whose terminals are too close has an unsafe, nonempty,
straight cut; Lemma 6a.6 shows that a design with an unsafe, nonempty, degener-

.ate, straight cut includes a wire whose terminals have overlapping extents.) The
third situation combines the modifications of the other two.
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Desired properties Relevant cuts Justification

Articles have disjoint extents, and wires Major straight cuts 5e.6, 6a.5
are self-avoiding

Articles are nondivisive and have disjoint Nondegenerate straight 5e.6, 6a.5,
extents cuts 5e.4, 6a.2

Wires are self-avoiding, and when two Nonempty straight 5e.6, 6a.5,
details have overlapping extents, one is a cuts 5d.3, 6a.6
terminal of the other

Articles are nondivisive and have disjoint Nontrivial straight All of the
extents, and no wire has terminals with cuts above
overlapping extents

Table 6c-1. Extensions of the design routability theorem. A design has an em-
bedding with the properties listed in the left column if and only if the cuts specified
in the middle column are safe. The first row represents the design routability the-
orem itself; the second row is the most natural extension of it; and the third row
describes the model that is closest to the sketch model. The fourth row represents
the most restrictive model.

II

~Figure 6e-2. Four types of cuts. Simple cuts between different articles are always
~relevant to routability; we assume these are safe. Other simple cuts may not be

important, depending on the model. As usual, cuts are striped and wires are grey.
Part (i) shows a trivial cut, which is always irrelevant. The cut in part (ii) is

-- 7 empty and degenerate, but not trivial; it is also unimportant. Part (iii) shows an
_ empty but nondegenerate cut, which if unsafe may identify its terminal as divisive.
" The cut in part (iv) is degenerate but nonempty. If unsafe, it may indicate that
~the terminals of wa are too close.

i!! Even better, the design routing theorem holds in all the models outlined in
i Table 6c-1. The reason is that all these models strengthen the conditions on the

features of a proper design, but not the conditions on wires. Suppose we move from
the standard design model to a more restrictive one, and strengthen the definition of

=-- safety correspondingly. Ideal designs are safe by definition, and hence their fringes
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will satisfy the stronger conditions. Thus ideal designs will remain proper. And
since we do not weaken the conditions on feasible wires, no feasible wire in the

altered model will be shorter than its ideal embedding.

Sharp safety and routability

The most important entry in Table 6c- I is the third, which describes the model
closest to the sketch model. For convenience of reference I restate that entry as a

theorem. A design is -proper if its wires are self-avoiding, and when two of its
details have overlapping extents, one is a terminal of the other. The design is g-
routable if it has a #-proper embedding, and 0-safe if its nonempty straight cuts are
safe. (The terminology will seem less strange in Chapter 8.) Every #-safe design is
safe, and hence the design routing theorem applies to all #-safe designs. The design
routability theorem, on the other hand, becomes the following.

Theorem 6c.3. Every I-safe design is 0-routable, and every 0-routable design
is I-safe. 13

6D. Cuts That Decide Routability

A useful interpretation of the design routability theorem is this: For every sheet,
there are certain cuts (namely, all straight cuts) whose safety, emptiness, and de-
generacy in a design determine the routability of that design. I call such a set of
cuts decisive. If every sheet has a small, easily computable, decisive set of cuts,
then routability testing reduces to the problem of computing the flow across a cut
and determining whether a cut is degenerate. The first problem is can be solved
by the techniques of Section 7C. The second problem goes away if we want to test
0-routability rather than routability.

Definition 6d.1. A set of cuts r on a sheet S is 0-decisive (under a particular
wiring norm) if for every design fl on S that is not -routable, some cut in r is
unsafe and nonempty in fl.

In this section we find finite -decisive sets of straight cuts. Not only are they
finite, in fact, but their size is at most quadratic in the complexity of the sheet,

by which I mean the number of convex polygons needed to define its boundary.
(See Definition 6d.7 below.) We derive the decisive sets by successive refinement,
starting from the set of all straight cuts on a given sheet. Theorem 6c.3 implies

that the set of all straight cuts on a sheet is -decisive. Our first result shows how
one c-decisive set may be reduced to a smaller one.
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A criterion for decisiveness

We make use of link homotopy to reduce the number of cuts in our 0-decisive
sets. If two cuts are link-homotopic, then they have the same flow and emptiness
in every design. Only the shorter one needs to be included in any 0-decisive set,
because if the longer one is unsafe and nonempty, so is the shorter one. In any
given sheet, the number of link classes of straight cuts is finite, so one might try
to find a 0-decisive cut set by choosing a minimum-length cut from each link class
that contains nontrivial straight cuts. Not all link classes have minimum-length
elements, however.

Fortunately, when a link class [a]L has no minimum-length element, there is a
chain -f for a link in [GIL whose length is no greater than that of any link in [a]L.
Using the results of Section 4F, we can show that some link of -f is unsafe and
nonempty whenever any link in [a]L is unsafe and nonempty. Consequently the link
class [a]L may be discarded in favor of the link classes of the links of -f. We say a
is weak, because other cuts give stronger constraints on 0-routability. The precise
definition we need is the following.

MDefinition 6d.2. Let E and r be sets of linear paths, and suppose every path
in E is a cut in the sheet S. We say F dominates E if for every cut o E E, there is
a straight path -' with 11-t[l _< 1all and either

(1) -y is a link inF n ['7L, or
(2) y is a chain for a link in [L, and -y contains either two or more links or an

edge of a fringe of S.
If E is the set of nontrivial straight cuts in S, then r is called dominant in S.

Dominance is transitive. For if a path T dominates o, then either IrHI <_ hail and
T L a, in which case any path that dominates r also dominates a, or condition (2)
holds for a and some chain -y. In the latter case we say a is weak. Weak cuts are
dominated by every cut set, even the empty set. Dominant cut sets are g-decisive,
as we now prepare show. The name of the game is finding dominant cut sets.

Lemma 6d.3. Let r dominate the set of nontrivial straight cuts in a sheet S.
If any straight cut a in S is unsafe and nonempty in a design f), then some cut
% E F with 11'11 y< 1a'll is unsafe and nonempty in f0.
Proof. Because a is nonempty, it is nontrivial, and hence F dominates it. We show
that fl has an unsafe, nonempty cut in F by successively reducing a. Let -f be the
straight chain that is related to a as in Definition 6d.2.

In case (1) the path -y itself is the unsafe cut in r. Case (1) says that y is a cut
that is link-homotopic to a, so flow(-y, 0) = flow(a, A) by Proposition 4b.3. Since
11-1 fll, we have cap(-y) < cap(a), and hence the fact that a is unsafe in fl
implies that -y is unsafe in 0. Similarly, -y is nonempty because a is nonempty.
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In case (2) we reduce a to a link of -y that is still unsafe and nonempty. Let 6 be
the minimum distance from a fringe vertex to a fringe edge that does not contain
that vertex. Then every link of a straight chain in S has length at least 6, and every
edge of a fringe of S has length at least 6. Hence by the conditions on -t, the unsafe
link we find will be shorter than a by at least 6. So the process of finding shorter
and shorter unsafe cuts must eventually terminate with a cut falling into case (1).
If -' contains only one link A, one can show that A z-L a. Since 1111 < 1lall, the
link A is both unsafe and nonempty. Henceforth we suppose that -f has two or more
links.

Assume first that a is nonempty but degenerate. Because a is straight, Corol-
lary 4e.3 shows that flow(a, !l) = 0. Hence the terminals of a are the two terminals
of a wire in Rt, call them A and B. Since these terminals are convex, and -f contains
two or more links, -t must intersect other fringes as well. Say -f contains links from A
to C and from B to D, where A # C and B 6 D but possibly C = D. Because
cap(-y, fl) < 0, the extents of A and B overlap. Therefore either A and C have
overlapping extents, or B and D do, or perhaps both. In either case -y contains a
link of negative capacity between different fringes: it is unsafe and nonempty.

The remaining possibility is that a is major. In this case, let a E [a1L be a link
for which 7 is a chain. We may replace a by any link in [yr]p, so choose a very
close to -t in length. Specifically, let lall - 11all be less than - margin(a, 0). Then
because lal < hloll we have

cap(a) = cap(a) - (lall - flall)
< cap(a) - margin(a, Q)

= flow(a, 0).

Since flow(a, QZ) = flow(a, fl) by Proposition 4b.3, it follows that a is unsafe. And
because -f is linear, it is the elastic chain for a (Lemma 3d.3). Let 71i, ... , IN be the
major links of the chain -f. Proposition 4f.1 and Lemma 4f.3 bound the flow and
capacity of these links:

n n

cap(-f,) :_ cap(a) - gaps('y); Zflow(,) > flow(a) - gaps(7r).

Subtracting the latter from the former gives us the inequality E-=, margin(-tm, 1) <
margin(a, fl), and the left-hand side is negative. Hence 7, is unsafe for some i. This
completes the proof. E3

Corollary 6d.4. Every dominant cut set is -decjsve.

Proof. Suppose r dominates the set of nontrivial straight cuts in a sheet S. Let Q
be a design on S, and suppose Q is not O-routable. Because the set of all straight
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Section 6D Cuts That Decide Routability

cuts in S is 0-decisive, S1 has a unsafe, nonempty, straight cut, call it a. Lemma 7c.3
now gives us an unsafe, nonempty cut in r. E

Minimal paths between fringe edges

Rather than deal with link-homotopy classes, there is a purely geometric way to
find dominant cut sets. It involves choosing paths of minimum length between fringe
edges. Let P and Q be two compact regions in the plane. A minimal path from P
to Q is a linear path a from P to Q such that U1all equals lIP - QII, the minimum
distance between a point of P and a point of Q. Together with Corollary 6d.4, the
following result implies that a 0-decisive cut set may be obtained for a sheet S by
choosing a minimal cut between each pair of fringe edges of S, whenever such a cut
exists.

Lemma 6d.5. If a is a nontrivial straight cut, and r is a minimal path between
the same fringe edges as o, then r dominates a.

Proof. Let S be the sheet in which a is a cut. Let P be a fringe edge containing
a(O) and r(O), and let Q be a fringe edge containing a(1) and 7(1). Say P points at
Q if the line containing P intersects the middle of Q. If the segments P and Q are
parallel, then a must be a minimal path from P to Q. In this case a = y, and we
are done. We may assume P and Q are not parallel, whence at most one of them
can point to the other.

Q Q Figure 6d-1. Reducing one linear path to a
shorter one. Each panel shows seven stages

Y 1 of a homotopy H between a and r, namelyrn H(.,y) for y = , 6 . Every

is a linear path from the fringe edge P to

the fringe edge Q.

We first construct a family of linear paths { 71v : y E I } that interpolate between
a and r. These paths determine a homotopy H: I x I - R2 by H(x,y) = ,(x).

If neither of P and Q points at the other, then H interpolates linearly between a
and r: we put

,* H(x, . a) = o(x) c, r(x). (6-1)

Otherwise, supposing that P points at Q, we define r to be the linear path parallel
to a from r(O) to Q, and define H by

H(x, •=(a(x) 1 77(x)) (7(x) > 7(x)). (6-2)
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This definition says that for 0 _ y S ,the path il, moves parallel to itself from
a to rq, and for < y < 1, it pivots around r(O) going from r7 to r. In both cases
770 = a and 17 = r.

The key properties of H are that for each y E I, the path %/ is linear, 1177,11 _ 11ail,
and 71, intersects P and Q at its endpoints alone. Linearity is immediate from the
definitions. Now we prove that jjit/vi is maximal at y = 0. When equation (6-1)
holds, the linearity of H and the convexity of 11 - 11 imply that 11j7y41 is a convex

*function of y. Since T is minimal, 1177yll is a nonincreasing function of y. The
same argument applies to equation (6-2), at least for y > 1; for y _ 1/2 the
path r77, is a shrunken copy of a, and hence 11i7.11 is nonincreasing on [0, 1] also.
The third property, which concerns the intersection of ry with P and Q, should be
geometrically obvious.

Now we prove that either H is a link homotopy, or else some path 77y is a chain
for a link in [all and contains either two links or a fringe edge. In either case r
dominates a. Let z be the infimum of the values y such that 77, is a link in S, and
put -f = 7J.. Note that IhiY < h all. There are two cases.

(1) If z = 1 and -y is a cut, then ily is a link for all y, and hence H is a link
homotopy between a and -. Here 7 falls into case (1) of Definition 6d.2.

(2) If 7 is not a cut, then -7 is a chain for a link X in [alL; one can extract
homotopies from H to prove a =L X =p -. This could only fail if -y were
constant, but then a would be trivial, contrary to assumption. The middle
of -y must contain a vertex of S, and this vertex is not on P or Q. Either
this vertex is connected to 7(0) or 7(1) by a fringe edge, or else 7 contains
two or more links. Thus 7 falls into case (2) of Definition 6d.2.

The remaining possibility, that z < 1 and 7 = 77, is a cut, can be ruled out. For
in this case %, is a cut for all y sufficiently close to z. C0

Using Lemma 6d.5 and the transitivity of dominance, one can obtain smaller
c-decisive cut sets. The following lemma shows that one need consider only cuts
that are locally minimal, that is, minimal with respect to all the fringe edges they
intersect. Formally, a linear path a in R2 is locally minimal in the sheet S if there
are fringe edges P and Q of S that contain a(0) and a(1), respectively, and whenever
P and Q are such edges, a is a minimal path from P to Q.

Lemma 6d.6. The nontrivial, locally minimal cuts in a sheet are dominant.
Proof. Let a be a nontrivial, nonweak cut in S. It suffices to prove that some
locally minimal cut r in S dominates a. Let P and Q be fringe edges of S that
contain a(O) and a(l), respectively. Choose a minimal path r from P to Q. By
Lemma 6d.5, r dominates a. Because a is not weak, r is a cut in S. If r is not
locally minimal in S, then there are fringe edges containing the endpoints of r which
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are closer to one another (in the wiring norm) than P and Q. Replace P and Q by

these fringe edges, replace a by r, and repeat. Since the number of pairs of fringe

edges is finite, we must eventually find a cut r that is locally minimal in S. By the

transitivity of dominance, r dominates a. E3

The boundary of a sheet

The final result of this section provides our strongest and most general 0-decisive
cut sets. Definition 6d.7 points the way.

Definition 6d. 7. An edging for a sheet S is a finite set A of convex polygons

and line segments in R2 - (S - Bd S) whose union contains Bd S. A cut set F spans

the sheet S if S has an edging A such that for every two elements P, Q E A, either

r contains a minimal path from P to Q that is a cut in S, or else there is a minimal
path from P to Q that is not a cut in S.

One natural way to obtain an edging for a sheet is to express its fringes as
unions of polygonal obstacles. (The simplest edging for a sheet is just the set of
fringe edges.) Minimal cuts between these obstacles determine a 0-decisive set.

Proposition 6d.8. Every cut set that spans a sheet is dominant.

Proof. Let F span the sheet S, and let A be the edging satisfying the condition
of Definition 6d.7. Because dominance is transitive, it suffices by Lemma 6d.6 to
show that every nontrivial, locally minimal cut a in S is dominated by F. We may
assume that a is not weak. Choose P,Q E A such that a(O) E P and a(1) E Q,

and such that both P and Q contain edges of Bd S. Because a is locally minimal
in S, it is a minimal path from P to Q. Let -y be a minimal path from P to Q that

is either a cut in F or not a cut. We prove that either

(1) -y dominates a, or

(2) there is a shorter cut a' that dominates a and is not locally minimal.

In case (2) we repeat the process, replacing P and Q by two elements of A that
are closer. Since A is finite, this process must eventually terminate in case (1). By
transisitivity of dominance, then, F dominates a.

We make use of the geometry of P and Q. Let P" denote the set of points in
P at which the minimum distance to Q is achieved, and let Q* denote the set of
points in Q at which the minimum distance to P is achieved. Because P and Q are
line segments or convex polygons, both P" and Q* are points or line segments. If
(P" U Q') g Bd S, then a' is a path between the same fringe edges as a. In this

case a' dominates a by Lemma 6d.5, and case (1) occurs. Now suppose that P,

and Q" do not both lie in Bd S. Let A and B be the components of P In Bd S, and
Q* nl Bd S,, respectively, that contain the endpoints of a. Then either A intersects
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a fringe edge that approaches closer to Q° than P*, or B intersects a fringe edge
that lies closer to P* than Q*. In either case there is a minimal path a' between
A and B that is not locally minimal in S. This path dominates a by Lemma 7b.5,
and case (2) occurs. 03

Proposition 6d.8, in combination with Corollary 6d.4, will be useful for proving
the sketch routability theorem and the correctness of Algorithm T.

} '-
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Chapter 7

From Theory to Algorithms

Despite all the theorems of preceding chapters, proofs of correctness for the algo-
rithms in Chapter 1 still lie some distance away. Two difficulties must be overcome:
the gap between the sketch and design models, and the difference between the algo-
rithmic constructions of Chapter 1 and the mathematical definitions of Chapters 4
and 5. For example, we must show that the ideal embedding of a wire may be

4 constructed by merging the shortest paths through certain corridors, and that the
same technique applied to a sketch produces a proper realization of that sketch.

My strategy is to justify the algorithmic techniques in the context of designs,
and then carry them over to sketches. This chapter discusses methods for testing
the routability of a design and computing the ideal embeddings of its wires. The
techniques presented in this chapter are those embodied by the sketch algorithms of
Chapter 1, adapted to the design model. Here the emphasis is on theorems, however,
rather than detailed algorithms. The following chapter addresses the differences
between designs and sketches, and uses the results on design algorithms to prove
the correctness of the sketch algorithms.

Because the main purpose of this chapter is to explain the algorithms of Chap-
ter 1, in preparation for proving them correct, it ignores certain issues that arise
in the design model. Difficulties arise because the terminals of a wire in a design
are not points. When routing a wire in a design, for instance, one must consider
where its endpoints should be, whereas in a sketch the endpoints of every trace are
fixed. Consequently I do not describe how to find the endpoints of a wire's ideal
embedding. This omission is reasonable since the design model is not appropriate
for practical use. (Section 10C notes that complete algorithms do exist for routing
and testing the routability of designs. They are less efficient, however, than the
corresponding algorithms for sketches.)

Chapter outline

To understand this chapter it helps to be familiar with Chapter 1, since the two
share many ideas. Section 7A relates path homotopy to gate lists, and thereby lays

- 203 -

4 V. "i.



From Theory to Algorithms Chapter 7

the groundwork for algorithms that find routes for wires. Section 7C shows how the
flows across cuts and half-cuts may be computed by counting crossings with elastic
chains.

The final two sections concern the construction of ideal embeddings. By analyz-
ing the composition of ideal wires, we show that the ideal embedding of a wire can
be obtained by merging suitable partial embeddings of the wire, as in Algorithm R.

7A. Geometric Representations of Path Classes

The first thing one needs in an algorithm that deals with homotopy constraints
is a means of working with homotopy classes. Many different representations are
possible. If the paths in question are loops at a common base point, the fundamental
group suffices. The representation I use is slightly more general, and is derived just
as one might compute the fundamental group: by explicit construction of a blanket.
It may seem odd to perform this construction after having derived so many facts
about blankets, and not before. But knowing how to build a blanket would have
simplified few of those results. Moreover, the mathematical results of this thesis do
not depend upon this construction at all; I use it only to justify some algorithmic
techniques.

My algorithms represent the path class of a path by means of its crossing se-
quence with a set of cuts that partition the routing region. In Chapter 1 we called
these sequences corridors. In this section I define a similar notion for the design
model, called the path code of a path. I then prove that the endpoints and path
code of a piecewise linear path define its path class.

Patterns and seam lists

We first view the sheet as being made of simply connected pieces sewn together
along seams. The blanket will be constructed by sewing together infinitely many
copies of these pieces.

Definition 7a.1. Let S be a sheet, and let r be a finite set of disjoint simple
cuts of S. Let So, ... , 5,, be the closures of connected components of S- U r Im 7,
regarded as subspaces of S. Suppose that each set Sk is simply connected, and that
each cut -1i lies in exactly two of them. Then r is a pattern for S. Its elements are
called seams, and the sets Sk are called the pieces of the pattern.

Given a pattern F for a sheet S, we define for every PL path a in S a seam list.
The seam list of a in r is a word over the alphabet r that records the sequence in
which a crosses over the seams in r. Because a is PL, it can cross over the seams
of r only finitely many times, and because the seams in I are disjoint, the intervals
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Figure 7a-1. A pattern for a sheet, and
the corresponding graph. The seams (dark
lines) separate the sheet into simply con-

.. .nected pieces (closures of shaded regions).
The adjacency relation of these pieces forms
a graph (circles and light curves) with no
self-loops. The seam list of a path a-
the sequence-of seams that a crosses over-
corresponds to a unique path in this graph,
provided that no seam contains either end-
point of a.

in which a crosses over the various seams occur in a definite order along a. (Minor
complications would arise if one allowed the seams to intersect at their endpoints,
as is desirable for some applications.) In this section I write sequences of seams as
strings, with a centered dot for concatenation. The empty seam list is denoted E.

We represent the path class of a chain by its endpoints and its reduced seam
list, or path code. Starting from the seam list of a PL path a, the reduced seam list
of a is obtained by repeating the following reductions until no further reductions
apply. Where two occurrences of the same seam yi are consecutive, delete both. If
the first seam is -yi and a(O) E Im -'/, delete the first seam. If the last seam is -yj
and a(1) E Im y-, delete the last seam. These reductions evidently terminate in a
unique sequence.

For almost all piecewise linear paths a in S, the path code and the endpoints of
a determine the path class [alp. Unfortunately, this characterization only holds for
paths a that are free in the pattern F, meaning that no seam of -' contains either
endpoint of a. The goal of this section is to prove Proposition 7a.8: In the presence
of a pattern r, two free PL paths are path-homotopic if and only if they have the
same endpoints and the same path code. The "if" direction is fairly straightforward.
Its core is the following lemma.

Lemma 7a.2. Let a be a PL path in a sheet S. For any pattern r on S, there
is a PL path /3 E [a]p whose seam list in r is the path code of a in F. If a is a link,
so is 3, and if the seams of r are straight, then 1/31 < lal.
Proof. Let F = {-ti, ... , -t} be a pattern on S, and let I denote the seam list
of a in the pattern F. By induction, it suffices to show that if some string C can
be obtained from by a single reduction, then there is a path /3 E [alp satisfying

1 -1< ic*l whose seam list is C. There are three cases, one for each reduction rule.
All three cases are very similar, so we consider only one case.

Suppose that equals u • -i • -i " v for some substrings u and v, and that C is
u v. Then there are points s, t E a-'(Im -i) with s < t such that:
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(1) the subpath aa,: has seam list u;

(2) the subpath ata has seam list v; and

(3) the subpath a°:t crosses over no seam in r.

Write -1i as -y, and define a, b E I by y(a) = a(s) and -7(b) = a(t). Statement (3)
implies that a:t lies within a single piece P of S. Since P is simply connected, and

Nb is also a path in P, we have a.:t Cp 11:b by Lemma 2a.5. If -y is straight, then

7a:b is linear and hence 17a:61 < la,:tl.
We create / by splicing 7a:b into a. Put 1(x) = a(x) for x 0 (a, t), and define

/3.:t = 7-a:b. Clearly / is a PL path in S, and / is a link if a is. Also 0 3-p a and-if
- is straight- /31 < Jal, because of the corresponding facts about 7ltb. Finally, since
/3 does not cross over 7 in the interval [., t], its seam list is that of ao:, concatenated
with that of at:i. By statements (1) and (2) above, the seam list of / is just u. v,
which is (. 1

If the seam list of a is e, then / lies within in a single piece of S, and that piece
is simply connected. Hence if a and 13 are loops, they are inessential.

Corollary 7a.3. If a PL loop A has empty path code in some pattern, then A
is inessential. 0

Construction of the blanket

The seams and pieces of a pattern form the arcs and nodes, respectively, of a
graph: each seam is incident on the two pieces that include its image. If a1 is a
PL chain that is free in the pattern, it corresponds to a path in this graph. The
path begins with the unique piece containing a(O), ends with the unique piece
containing a(l), and passes through a sequence of arcs equal to the seam list of a.

With this correspondence in mind, we show how to construct a blanket for a
sheet S, given a pattern r for S. Pick any point z 0 E S that lies on none of the
seams in r, and let E denote the set of all path codes of PL paths beginning at xO.
By Lemma 7a.2, every path code is the seam list of some path, and we may take
that path to be free. Hence every string t E E corresponds to a path in the graph
formed by the pieces of r. As such, it has a final piece finaI( ). Let P be the
disjoint union of the final pieces of the seam lists in E:U P = fina().

For each seam list in 'E, let hc be a homeomorphism between the piece final( )
and the component of P corresponding to . There is a natural projection p: P -- S
that sends Im h( to final( ) via h, for each . E -.
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The blanket will be a quotient space Q of P. For each nonempty seam list in --,

we have = C "'yi for some i, and so final(() and final(C) are adjacent pieces of S

that share the thread Im -i. We identify h¢(yi(t)) with h ('y(t)) for each point t E I.

If the point z lies on the seams -'1, ... , '7k,, then h(z) is identified with exactly k

other points. Points lying on no seams are not identified with any others. Let Q
be the quotient space resulting from these identifications, and let q: P --* Q be the

quotient map. By definition, a subset U is open in Q if and only if q-(U) is open
in P. The inverse image of a point of Q is mapped to a single point of S by p, and

hence p factors through Q; say p = a o q.

(P,h.(x0)) --- > (Q, qo h,(xo))

(S, xo)

We now prove that Q is a covering space of S. Later we show that Q is simply
connected.

Claim 7a.4. In diagram (7-1), the map .: Q - S is a covering map.

Proof. Let z be any point of S. We must find a neighborhood U of z in S that
is evenly covered by a. (See Definition 2b.1.) For historical reasons, we allow the
possibility that two or more seams intersect at z. Assume without loss of generality
that z lies on the seams 71, ... , 7,, and that z lies in the pieces So, ... , Sm for

some m > 0. By suitably renumbering the seams and pieces, we may assume that

Si-I n S = Im 7i for 1 < i < m. Let U be a neighborhood of z in S that intersects
no seams other than 7i, ..., -,. and no pieces other than So, ... , S,,.

We begin by characterizing p-(U). Let _E be the subset of - consisting of those
path codes C E - with final(C) = S. By the definition of p, we have

m

p-,(U) = U U hC (u n s,). (7-2)
i=O WS1

The sets h((U n Si) are disjoint in P. We partition them into collections, each
of which is sewn together by q to form a copy of U. For each E E0 , and for

0 < i < m, let &, be the seam list obtained by reducing • -i - -', removing
consecutive occurrences of the same seam. Then .i is the path code of some free
PL path in S starting at xo and ending in Si; hence we have i E 'E. For each seam
list E E -, there is a seam list E E0 such that i = C: take to be the reduction

of C-y. 7i" Hence the seam lists UO0 -i are in bijective correspondence with the
seam lists {i E Eo -and 0 < i < m }. Thus equation (7-2) can be put in the
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form m

p- (U) = U U h ,(u n s,). (7-3)

Because q is onto, we have s- 1 (U) = q o q- o s-(U), which is q(p-(U)). For
~ E -o, let V denote the open set U' hc0,(U n Si). The sets V are disjoint, and
equation (7-3) implies that s-(U) = Uces4 q(V().

To show that U is evenly covered by s, it suffices to show that the sets q(V)
are disjoint and homeomorphic to U under s. Hence we study the identifications
that q makes within and between the collections V. Let be a seam list in -o. For
1 < i < rn we have either ti = yi-l • -i (the usual case) or else i • .i = i-l (if the
last i seams in are -t - "- -yl). In either case, q identifies the set hc,_,(U In Im i)
with the set hc,(U fl1lm-i). That is,

q o h ,(z) = qo hf,(z), for zE Un1Im-yi. (7-4)

As a consequence, q identifies all the points hc,(z) for 0 < i < n. It carries out no
other identifications. Hence if and ' are distinct elements of -o, then q(V) and
q(V,) are disjoint.

It remains to prove that for C E -o, the map s: q(V) --+ U is a homeomorphism.
We construct an inverse r: U --+ q(V) for s as follows. For 0 < i :_ m, define r on
U Cl Si to be q o ht,. By equation (7-4), these definitions agree on their intersections.
Since U n1 Si is closed in U, this makes r continuous. Now for x E U In Si we have
s o r(z) = p o h,() = x, so s o r = idu. Similarly, if y E q(V(), then y = q o hc,(x)
for some i and some x E U In Si, by the definition of V. Then r o s(y) = r(x) = y,
so r o s is the identity on q(V). D

Lifting to the blanket

The reason for constructing the blanket Q is to help us show that paths with
different path codes have different lifts starting at the same point, and thus are not
path-homotopic. The lifting is carried out by the following lemma.

Claim 7a.5. Let p be a PL path in S with seam list and path code C, and
suppose p(O) is the base point xo. If Q is the covering space of S in diagram (7-1),
there is a lift ;Y of p to Q such that i(0) = q o h,(p(O)) and ;'(1) = q o he(p(l)).
Proof. Put = -1, "-yi .. .74. For 0 _ j _< k, let j be the substring consisting of the

,* first j seams of , and let (j be the reduction of that substring. Choose an ordered

sequence of points 0 = to, ti, ... , tk, tk+1 = 1 from I such that p(t,) E ImT,, for
I < j _< k, and each subpath p, = pt,:t,+, lies within a piece of S, namely final((,).
We lift p, to the path

= q o hC, op,
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which projects to pi under s because s o q o he is the identity on final(O) for any
reduced seam list 0. Then we define WT by W4t,+, = Wi for 0 < j < k. To show that
W is well defined and continuous, we must prove that Wj-(1) = p'j(0) for 1 < j _< k.
In other words, we must show that the points hC,_(pj-1(1)) and hc,(pj(O)) are
identified by q. They are, because pji(1) = pi(O) E Im7t,, and (i differs from (j_1
only in a final seam -ti,.

The lemma now follows easily. The path W lifts p because ;', lifts pj for each j.
We also have W'(O) = Wo(0) = qohc.(p(O)), and similarly Y(1) Wk (1) = qoh(,(p(1)).
Since (0 = e and Ck = C, the endpoints of W are as desired. 0

Now we can complete the proof that Q is a blanket of S.

Claim 7a.6. In diagram (7-1), the space Q is simply connected.

Proof. The space Q is path-connected because every piece of Q can be connected
to the base point h,(xo) by a path. Every point z E Q has the form q o hc (y) where
C is the reduced seam list of a PL path a from zO to a piece containing y. Let v
be a path in that piece from a(1) to y. Lifting a to Q via the preceding lemma,
we obtain a path from q o h,(xo) to q o hc(a(l)), which, when concatenated with
q o hc o v,, connects h,(zo) to z. Thus Q is path-connected.

To show that Q is simply connected, we prove that an arbitrary loop i: I -- Q
based at q o h,(xo) is inessential. Because path homotopies can be lifted (Proposi-
tion 2b.4), it suffices to show that the loop A = s o # at Xo is inessential in S. Any
path in a sheet can be made piecewise linear by application of a path homotopy.
(To prove it, cover the path with finitely many starlike regions.) Hence we may
assume that \ is PL. Let C be the path code of A. By the preceding lemma, A has a
lifting #': q o h,(zo) -. + q o hc(zo). Uniqueness of liftings (Theorem 2b.2) tells us that
A = A'. Hence q o hc(zo) "" q o h,(xo), and so C can differ from e only by the seam
(if any) that contains x0 . But C is reduced, and cannot begin or end with any such
seam. Therefore C = e. We conclude from Corollary 7a.3 that A is inessential. 03

Knowing that Q is a blanket, we can now extend Claim 7a.5 to say which seam
liftings cut the lifting of a path p.

Lemma 7a.7. Let S be a sheet with pattern F, and let w be a PL path in S.
There is a lifting Z of" w such that the sequence of IF-liftings that separate the the
endpoints ofZ, when projected to S, is the path code of w.

Proof. By Lemma 7a.3 there is a path p E [w]p whose seam list and path code4 in the pattern I' both equal the path code C of w. To every lifting of w there

corresponds a lifting of " with the same endpoints. Hence it suffices to prove the
lemma with p in place of w.

We lift p to a blanket sewn together from pieces of F. Let So be the first piece p
enters. (If p stays entirely within a a seam, the lemma is trivial.) Let ar be a path
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in So ending at p(O) and beginning on no seam of r. The the seam list of a*p is .

Choose the base point a(O) for S, and construct the blanket Q as in diagram (7-1).

All blankets of S are equivalent, by Proposition 2b.7, so we may as well lift to Q.

Lift a * p to a path a * ;Y in Q as in Claim 7a.5. In the notation of Section 7A, we

have (O) = qoh,(p(O)). Say C is the sequence ( -, .. -y,), and for 1 < i < n let (i
be the subsequence ( "yi, ... , 7 ). Because C is reduced, (i is a path code for each i.
An examination of the specific lifting constructed by Claim 7a.5 tells us which seam

liftings crosses over. The ith seam lifting crossed over by is 5, = q o h<, o -ti.
Between j, and j,+1 lies the lifting Im q o hC, of the piece final(().

I argue that the links -1, ... , y are the seam liftings that separate the endpoints

of ', and that each link j separates W(O) and the links 71, ... , ji-I from ;'(1) and

the links ji+, ... , j,. All the links ji are distinct, which means " never crosses
back over any of them. Thus each link 7j separates the endpoints of '. No other
seam liftings do so, else would cross over them. Finally, for 1 < i < n the piece
lifting shared by 5j-j and 5i lies on the opposite side of 5i from the piece lifting
shared by ji and ji+. Hence ji separates the sets Im 5j with j > i from the sets
Im j with j < i. 0

Path homotopy and link homotopy

Results 7a.2 through 7a.5 imply that path codes characterize path homotopy,
at least for free paths.

Proposition 7a.8. Let r be a pattern for a sheet S. Two PL paths in S that
are free in r are path-homotopic if and only if they have the same endpoints and
the same path code in r.

Proof. Let a and a' be piecewise linear paths in S. If a and a' have different
endpoints, then they cannot be path-homotopic, so we assume henceforth that

a(O) = a'(0) and a(1) = a'(1). Let f and C' be the path codes of a and a',
respectively, in the pattern r. By Lemma 7a.2, there are PL paths 3 E [alp and

0' E [d]p whose seam lists are and ', respectively. It suffices to prove that
3 p 0' if and only if = '.

First we prove the "if" direction. Suppose = ', and let A be the loop #3* 0'.
Because 3 and $' are free in r, the loop A does not cross over any seam at 1/2.
Hence the seam list of A is then that of 13, namely , concatenated with that of
13', namely ', which equals . It follows that the path code of A is empty, which
makes A inessential (Corollary 7a.3). By the groupoid properties of concatenation
(Section 2A), we have

[Olp = [3* \p = [3*33')Ip [)1']p.
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Now we prove the "only if" direction. Let z0 be the point 3(0) of S, and let Q be
the covering space of S constructed by the sewing technique leading to diagram (1).
Suppose 3 and 3' are path-homotopic, and let z denote the point 3(1) = 3'(1). We
now lift 3 and 3' to Q beginning at the point I o h,(xo). Let 3 and 3' be the lifts of
3 and 3' given by Claim 7a.5. Then 3(1) = qoht(z) and 3'(1) = qohf,(z). Because

3 p--P 3', we have =p /3 by Proposition 2b.4, and hence q o hf(z) and q o ht,(z)
are the same point of Q. In other words, hf(z) and hf,(z) are identified by q. Since
3 and 3' are free, z lies on no seam, and therefore = '. 0

Characterizing link homotopy in terms of seam lists is more difficult, but one
useful result is relatively easy. Let r be a pattern for the sheet S. The borders of a
piece P of F are the components of P n Bd S. If a link /3 in S is free in F, then each
of its endpoints lies in exactly one border, and these borders are called the roots
of 3. Like the endpoints of 3 and the terminals of 3, we consider the roots of 3 to
be an ordered pair.

Lemma 7a.9. Let F be a pattern of disjoint seams for the sheet S. If two free
links in S have the same path code and the same roots in F, they are link-homotopic.

Proof. This claim follows directly from Lemma 3a.4 and Proposition 7a.8. If two
free links a and 3 have the same borders P and Q, there are paths v: a(0) -+ 3(0)
and r.: a(1) --* 3(1) in P and Q, respectively, which touch no seams. And if a and /3
have the same seam list in F, then a * Ke and v *13, which have the same endpoints,
have the same seam list in F as well. Proposition 7a.8 now shows a * re =p v*13,
which by Lemma 3a.4 implies a =p 3. 0

7B. Crossing Sequences

In the last section we related the homotopy classes of paths and links to sequences
of cuts. Previous results have shown us, however, that knowing the identity of

* a cut is often insufficient; one must also have a lifting or a crossing of that cut.
Consequently, this section studies crossing sequences of paths and relates them
to path codes. Two types of crossing sequences are of special interest: crossing
sequences of cuts in designs, and crossing sequences of wires in patterns. We handle
both in a single framework by studying arrangements, which generalize both designs

,* and patterns. An arrangement on a sheet S is a finite set of disjoint simple cuts
in S.

This section presents two main results that stand on their own, and several
smaller results whose importance will be clearer in the next section. One result
is a formal definition of the content of a cut, which in the design model is the
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sequence of wires forced to -Lross it. We show that in all embeddings of a design
that minimize the number of crossings of a simple cut X, the sequence of wires
crossing X is the content of X (up to link homotopy). Another theorem says that for
any arrangement of disjoint cuts of a design, there is an embedding of that design
(not necessarily proper) in which each wire makes as few crossings with those cuts
as possible. The latter result is the basis for a procedure used within the sketch
compaction algorithm for computing flow.

Lists, codes, and plans

Before we plunge into the definitions, a word about terminology is in order.
Given a chain a for a link in a sheet, and given a collection 4 of chains for links
in the same sheet, there are several sequences one can define. If the elements of It
are disjoint, one is the sequence of paths in 0 that a crosses over. We call this the
seam list, cut list, or wire list of ca in 4b, according to whether the elements of 0
are thought of as seams, cuts, or wires. We also define codes of a in 0, which are
always subsequences of the list of a in 0. The path code (or link code) of a in 4
is the sequence of elements of 4 that a is forced to cross, thinking of its endpoints
(or its terminals) as fixed. The final type of sequence we consider is a sequence
of crossings. Because the paths in the collection 0 will sometimes intersect, the
definition of crossing sequence is not the obvious one. A crossing sequence or plan
for a in 0 is a finite sequence of triples (p, a, t) such that p E 4) and (a, t) is a
crossing of p by a. If the crossings of a by cuts in 1' are finite in number, and no
two occur at the same point of w, then we may speak of the full plan of w in F,
namely the set of crossings of w by cuts in 1', ordered by position along w. But
we are primarily concerned with the kinds of crossing sequences in the two-part
definition below.

Definition 7b.1. Let M be the blanket of a sheet S, with p: M -- S the
covering map. Let w be a chain for a link in S. Let i be a lifting of w to M, and
let F be a arrangement on S. Consider the r-liftings that separate either (a) the
endpoints of w, or (b) the terminals of ;. They have a unique ordering 7i, ... , j"
such that for 1 < k < n, the simple link i separates 5(0) and j, through jk-1

from Z(1) and jk+1 through j,,. We call the sequence (-yl, ... , 7n ) the (a) path
code or (b) link code of L in F. For 1 < k < n, let (cA, tk) be a crossing of jk by Z.
The sequence of length n whose kth element is (p o 5k, ck, tk) is a (a) path plan or
(b) link plan for w in F.ii. When F is a pattern, this definition of path code agrees with that given in
Section 7A, by Lemma 7a.7.
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Kinship of crossing sequences

Path plans and link plans are not unique in general, but there is one important
situation in which a link has only one link plan. We say a link w conforms with an
arrangement F if cross(7,w) = wind(y,w) for all cuts -y E r. Said another way, w
conforms with F if and only if all crossings of cuts in r by w are necessary and no
two are similar. In this case the unique link plan of w in r is the full plan of w in r.

When a path has more than one path plan or link plan, all those plans are
related by kinship. Let -r, -t', w, and w' be chains for links in a sheet S. (In other
words, they all begin and end on Bd S, and so each has two terminals.) A crossing
(c, t) of -y by w is akin to a crossing (c', t') of -y' by w' if whenever j and & are liftings
of -y and w that reflect (c, t), there there are liftings j' and ' reflecting (c, t) such
that j has the same terminals as 5' and Z has the same terminals as Z'. Two plans
are akin if they have the same length, say n, and for 1 < k < n, the kth crossing in
one is akin to the kth crossing of the other.

Lemma 7b.2. Let p be a chain for a link w, let an arrangement r be given.
All the paths in [p]p have the same path code in F, and all their path plans in F
are akin. All the chains for links in [w]L have the same link code in F, and all their
link plans in F are akin.

Proof. These claims follow directly from Definition 7b.1. If a p -/3, one can choose
liftings & and /3 that Lave the same endpoints. Hence the sequence ( 5 1, ... , j")
in Definition 7b.1 will be the same for both, and corresponding crossings will be
akin. Similarly, if a and # are chains such that Q "lP a' -L /' -,p/#for some
links a' and 0', then one can choose liftings 5 and /3 that have the same terminals.
Consequently the sequence (51, ... , j,,) will be the same for both, and again,
crresponding crossings will be akin. 0

Kinship of crossings is strongly related to kinship of subcuts. Suppose that W
and w' are routes for wires, that -y and -' are cuts, and that the crossing (c, t) of -Y
by w is akin to the crossing (c', t') of -y' by w'. Then for e E {0, 1}, the half-cut a,:c
for w at t is akin to the half-cut a':, for w' at t'.

Link plans versus path plans

Every link plan for a link is the result of removing some of the crossings in a
path plan for that link. Let w and -y be paths in a sheet S that begin and end
on Bd S. (They are chains for links in S.) A crossing (c, t) of -y by w is trivial if for
some i,j E {0, 1} the path -Yi:c *Wt:j is trivial-path-homotopic to a path in Bd S.
We call the crossing 0-trivial if j = 0 and 1-trivial if j = 1. Link plans are obtained
from path plans by deleting as many initial 0-trivial crossings and as many final
!-trivial crossings as possible.
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Lemma 7b.3. Let w be a chain for a link. Every path plan for w consists
of a sequence of 0-trivial crossings, followed by a sequence of nontrivial crossings,
followed by a sequence of 1-trivial crossings. Every link plan for w consists of the
nontrivial crossings in some path plan of w.

Proof. We adopt the notation of case (a) of Definition 7b.1, so ..- , 7,) is
the sequence of F-liftings that separate the endpoints of the lift Z. Link plans are
defined in terms of the subsequence of ( , ... , 7,, consisting of those cut liftings
that separate the terminals of &:. Call these terminals T0 and T1, where 0(j) E T,
for j E {0, 1}. A link j fails to separate To from T1 if and only if ik shares a
terminal with Z, meaning that 5k(i) lies on the same fringe T as Z(j) for some
z,j E {0, 1}. And the latter is true if and only if (ck, k) is a j-trivial crossing of Yk
by w. Therefore a typical link plan for w in r is obtained from a path plar for w
in r by removing its trivial crossings and nothing more.

Figure 7b-1. The link plan within the path
plan. The light grey and dark grey links are

...... the r-liftings that separate the endpoints of
w; the darker ones also separate the termi-
nals of C;. The earlier light grey links make
0-trivial crossings with Z, and the later ones
make 1-trivial crossings.

Now we argue that the link plan is a contiguous subsequence of the path plan.
Let 1 < i < j < k < n, and suppose both 5i and jk separate the terminals of Z. It
suffices to show that j does also. According to Definition 7b.1, the link ji separates
the fringe containing o(0) from 5j, and likewise -k separates the fringe containing

(1) from 5j. Since Z(0) and L;(1) lie on opposite sides of 5j, it follows that the
entire scrap of 5i containing i(0) is on the opposite side of %, from the scrap of jk
containing Z(1). In particular, the terminals of Z lie wholly on opposite sides of 5j.

It remains only to show that no 0-trivial crossing in the path plan for w follows
a crossing that is not 0-trivial. Suppose that the itlh crossing is not 0-trivial, which
means that 5, does not intersect To. For j > i, the link 5 separates j from Z(O) and
hence from To. Consequently j cannot be 0-trivial, and the proof is complete. 03

The content of a cut

We now take the arrangement to be a design. Let X be a cut of a design Q.
The link code of X in 02 is what I call the content of X in 0. Lemma 7b.2 says that
link-homotopic links have equal content. Content determines flow: If the content
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of ( in 0 is the sequence (w 1 , ... , wa), then we have

n

flow(x,Q) = width(w,).

The link plans of X in Q are even more useful than content, however, because they
determine the flows across half-cuts also.

Lemma 7b.4. Let X be a cut of a design 11, and suppose the link plan of X
in Q includes n crossings. If for 1 < k < n the kth crossing is (wk, tk,ak), then

k-I n

flOw(XO:ak',P) = Z width(wi) and flOw(X:ahP,1) = E width(wi).
i=1 i=k+l

Proof. The proof is a direct computation from the definition of flow. Let j be a
lift of X, and for 1 < k < n lift wk to Zk so that (ak) = 1k(tk). By the definition
of link plan, the links Zk are precisely the P-liftings that cut . Consequently the
flow across X is just i=1 width(wi). The method of Proposition 4d.2 shows that
the liftings that contribute to the flow across XO:ok are just Z, through Zk-1, and
the liftings that contribute to the flow across Xi:a are just Wk+l through i,,. 03

When one replaces a design by an embedding of a design, the only effect on the
content of a cut is to replace each wire by its new embedding. In fact, something
stronger is true: the link plans of a cut in different embeddings of a design are all
akin.

Lemma 7b.5. Let T be an embedding of a design Q, and let X be a cut of
these designs. The link plan of X in Q is akin to that of X in T.

Proof. Let S be the sheet and M its blanket. Lift ( to a simple link x in M. Write
n = y,,,, wind(y,w) = -,ET wind(y, v). Let Zi, ... , L5,, be the il-liftings that
cut j, ordered as in Definition 7b.1, and likewise let v1 , ... , 9, be the T-liftings
that cut . No two of the links Z1, ... , Z,, are link-homotopic, by Lemma 4c.3,
and similarly for v1 , ... , v,,. Because each wire in T is link-homotopic to a wire
in 9., Proposition 3a.6 implies that there is a permutation 7r of {1,...,n} such that

.. -p P tY,(i) for each i.
We prove that 7r is the identity permutation. Since the wires in Q are simple and

disjoint, the links Z ..... , ,, are disjoint. Each makes exactly one crossi g with

and it crosses over j there, so for each i the links Z, with j < i lie in on th( - po-i e
side of D, from the links Z. with j > i. The cut -y respects P weakly bec
simple (Proposition 4c.7), and therefore no two liftings Zi and Z, share a tek. ,wpt
Hence for each 1. the terminals of the links , with j < i lie in the opposite scrap of
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Z, from the termi.,1 ls of the links Zj with j > i. A symmetrical statement holds for
-Vi. Let ' denote the collection of terminals of the links Z1, ... , ,, which are also
the terminals of the links v1 , 9. v,. The number of fringes in - which lie in the
scrap of Z, that contains j(0) is precisely 2(i - 1). The same goes for Th. But by
Proposition 3c.4, the links Z, and 9,(j), being link-homotopic, separate the fringes
equally. We conclude that 7r(i) = i for each i. The lemma follows. 03

Designs that minimize crossings

Next we study embeddings of designs in which the wires cross certain simple
cuts as seldom as possible. Let fQ be a design on the sheet S, and let F be an
arrangement of cuts in S. The design fQ is stable with respect to F if wherever a
wire of Q crosses a cut in F, it crosses over the cut there. (Consequently cross(-I,w)
is finite for all -y E F and all w E Q.) We say that Q conforms with F if for every
wire w E Q and every cut -y E IF we have cross(-yw) = wind(y,w). In other words,
every crossing of -I by w must be necessary, and no two may be similar. Conformity
implies stability: If S1 conforms with F, then fl is also stable with respect to F.

If the design fQ does not conform with F, then some wire in l deviates across
some cut in F. Pick w E f2 and -y E r. Let w,:i and -y:b be subpaths such that
either (1) Woa:t -p Ya:b or (2) Wt:a * Ya:b is a trivial link. Then we call wa:t a deviation
across ':b.

Lemma 7b.6. If a link w does not conform with a cut -I, then some subpath
of a is a deviation across some sub1. - 1 of -.

Proof. Suppose cross(7y,w) 5 wind(-y,w\. By the definition of winding, the quan-
tity cross(-I, w) is the larger. Either w makes an unnecessary crossing with Y, or else
two crossings of I by w are similar. If possible, choose two similar crossings (a, s)
and (b, t) of -y by w. In this case wa:, ' -y:6. Otherwise let (a, s) be an unnecessary
crossing of -y by w, and let j and Z be liftings that reflect this crossing. Because
no crossing of -y by w is similar to (a, s), the link Z makes only the one crossing
(a, s) with j. Hence Z shares a terminal with j; say Z(t) lies on the same fringe

* as i(b). In this case Wt:, * y-.b is a trivial link. So in either case wa:t is a deviation
across "Y,:b. 03

* VMaking a design conform to an arrangement

Given a design 0 and an arrangement F on the same sheet, we prove that 11 has
an embedding T that conforms with F. It can be obtained from f1 by a sequence
of local alterations that remove collapsible subpaths of wires in fQ. Suppose W:t is
a deviation across Y.-b. If w,:t is clean in F, meaning that Midw,: intersects no cut
in F, and y:b is clean in f0, then we say Wa:t is collapsible to -y.:b and vice versa. If
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W,:t is collapsible, then at least one crossing of -y by w can be removed by routing w,
and after this routing Q is still a design. One simply splices the path -Y:b into U
in place of w,:t, and then displaces this subpath slightly away from -t. If 0l was

previously stable with respect to F, it still is.
To make S conform with T, one first finds an embedding T of l that is stable

with respect to F. That step is easy. One then repeatedly collapses subpaths of

wires in Q until no more collapsible subpaths exist. The crossings between wires

of QT and cuts in F are finite in number, and at least one is removed with each

collapsible subpath. Hence the collapsing process must terminate. The following
lemma says that it terminates in a design that conforms with F.

Proposition 7b. 7. Suppose the design fQ is stable with respect to an arrange-

ment r. If no wire in l has a collapsible subpath, then Qt conforms with F.

Proof. We prove the contrapositive. Supposing that Ql does not conform with F,
we find a collapsible subpath of a wire in t. Suppose that the wire w E QT does

not conform with the cut -y E F. By Lemma 7b.6, there is a deviation W,:t across a
subpath .a:b.

First we make -Y.:b clean in T. Suppose it is not. Let 5 and Z be lifts of 3Y and w
such that 5(a) = Z(s). If ; makes another crossing (b, t) with 5, we may choose
it so that Z does not touch the middle of 5.. Let A be the path w,:t * -yb:G. Then
either A is a simple loop (if (b, t) is a crossing) or else Im A is a web of one thread. In

either case A has an inside N that contains no fringes (Propositions 3b.8 and 3c.5).
Because Ya:b is not clean in 11, there is a wire v E 0T and a crossing (c, x) of -f by v
where c E (a, b). Lift v to U so that 5(c) = 9'(x). Because !n is stable with respect
to F, the link U crosses over 5 at x, and consequently it enters N. Choose a point y
so that Mid Ux:i, C N. The point i(y) must fall on i:b, or on a fringe shared by
and Z. Put d = j-'((y)) or d = b accordingly. Then v.:, is a deviation across "c,:d.
Moreover, the interval [c, d] is strictly contained within [a, b], and the number of
such intervals (delimited by crossings with wires in 1T) is finite. So if we replace W,:t
and Ya:b by v,:, and -t:d, and repeat, we eventually get stuck with a clean subpath
of -Y.

Figure 7b-2. Finding the collapsible sub-
path. Grey paths are wires, striped paths

YM are cuts. Starting with the deviation w,:t
1 across ^f:b, we move to the deviation WU:V

CD across 7c:d, and thence to the collapsible de-
SW WSviation WX,, acrossY:f.
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Now we use the same ideas to make W,:t clean in F. Suppose the cut ( E F
makes a crossing (c, x) with w, where x E (s, t). Define the liftings and Z and the
submanifold N as before, and let V be a lift of X such that i(c) = Z(x). Then j
enters N at x, and since the cuts in F are disjoint, it must leave at a crossing (d, y)
with Z or end at a point (d) on the fringe containing Z(x), where z = t. In either
case w:y is a deviation across .Xc:d. Because -to:b is clean in Q, no wires of fQ can
penetrate N, and so Xc:d is clean in f0. If we replace w,:t and 'Y:b by w,:y and Xc:d,
and repeat, we end up with a clean deviation of w across a clean subpath of -. This
deviation is collapsible. 03

Corollary 7b.8. If F is an arrangement on the sheet of a design Q, then some
embedding of fQ conforms with r. 3

This result extends Lemma 4b.5, which says that if w is a wire and X is a cut,
then w has a route that crosses X at most wind(x,w) times. Corollary 7b.8 is
stronger in most respects, for it ensures that the route is an embedding, and it
handles many wires and many cuts simultaneously. Its only drawback is that the
path w must be a wire, not just any link.

In combination with Lemma 7b.5, Corollary 7b.8 provides an alternate definition
of content. If a design T conforms with a cut -y, then the full plan of Y in T is also
its link plan, and hence the content of -y in T is just the sequence of wires in T
that -y crosses. The content of -y in a design 11 therefore is the unique sequence of
wires wl1 , ... , w,, taken from fQ such that for every embedding T of !Q that conforms
with F, the sequence of wires that -f crosses in T is link-homotopic, element by
element, to (w 1 , ... , w,,).

7C. Two Methods for Computing Plans

Building on the results of the preceding section, we now present two methods for
computing a link plan for a cut with respect to a design and a path plan for a wire
with respect to a pattern. (Actually, we compute plans akin to these.) The former
type of plan tells us the content of a cut, from which we can compute its flow and the
flows of certain half-cuts. The latter type of plan helps us determine the corridors
through which to route wires. Both methods solve both problems. One of the two
methods involves replacing wires by their elastic chains, and it helps justify the use
of the rubber-band equivalent in Chapter 1. The other method involves finding an
embedding of one's design that conforms with a certain pattern. We will use it in
Chapter 9 when we study compaction.
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Section 7C Two Methods for Computing Plans

The elastic-chain equivalent

By analogy with the rubber-band equivalent of a sketch, I define the elastic-chain
equivalents of a design. Every path in a sheet, and every wire in particular, has a
unique elastic chain. Let us denote the elastic chain of a wire W by the symbol Z.
An elastic-chain equivalent of a design fl is obtained by replacing each wire w E fl
by the elastic chain p for a link in [WIL. Later I describe how to add information to
this structure to support computation of plans.

Elastic-chain equivalents have three important properties that we discuss here.
First, one can compute the elastic chain p by choosing a pattern of convex pieces
and finding a minimum-length path from w(O) to w(1) whose seam list is the path
code of w. Second, the elastic chain p has an easily computable path plan in any
arrangement of straight cuts, which is just its cut list in that arrangement. The
third property concerns a cut X and an arbitrary elastic-chain equivalent 4 of a
design fl. I show how to sort the nontrivial crossings of X by the elastic chains in 4
to form a crossing sequence akin to the link plans for X in Q.

Constructing elastic chains

The results of Section 7A give us a means of characterizing elastic chains.

Lemma 7c.1. Let r be a pattern for a sheet S, and let w be a wire in S that
is free in F. The elastic chain for w is the shortest canonical path in S from w(O)
to w(1) whose seam list in r is the path code of w in F.

Proof. Denote by C the path code of w in r, and let p be the elastic chain for
w. By Proposition 7a.8, every chain for w is a path from w(O) to w(1) whose path
code in r is C. By the definition of elastic chain, p is the shortest such path that is
canonical. Lemma 7a.2 shows that every path with path code C is path-homotopic
to a path with seam list C that is no longer. Hence the seam list of p is C. 13

Lemma 7c.1 suggests a method of constructing elastic chains. One first finds
a pattern F for the sheet S whose pieces are convex regions. (Its seams must be
straight.) To find the elastic chain for a path a, one then constructs the path code C
of a with respect to I by computing its seam list and performing the appropriate
reductions. The seams in the path code of a---or rather, their images-form a
corridor. The elastic chain for a can be computed by Algorithm W: it is the shortest
canonical path / through this corridor from a(O) to a(1). (See Section 1B.) How
do we know this? Because the pieces of F are convex and / has minimum length, /I
crosses over no fringe edges and no seams except those in C. Hence / is a path in S
with seam list (. Conversely, any path in S with seam list C is a path through the
corridor defining /3. Thus / is the shortest canonical path from a(0) to a(l) whose
seam list is .
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Path plans of elastic chains

Intuitively, the main reason for looking at the elastic-chain equivalent is that no
elastic chain crosses any straight cut any more often than necessary. We provide two
powerful formulations of this statement: one in terms of the path plans of an elastic
chain with respect to straight cuts, and one in terms of the link plans of straight
cuts with respect to elastic chains. Both rest upon the following basic lemma.

Lemma 7c.2. If a and /3 lift elastic chains for links, then P3 crosses over a only
if the endpoints of /3 lie on opposite sides of a.

Proof. We first derive an easy fact about pairs of crossings of -t by p. Let p denote
the covering map, and let (a, s) and (b, t) be two crossings of a by /3. Lemma 2a.5
we have a :b -p/3 t. Both p o a and p o/3 are elastic, and so by Lemma 3d.2, the
paths (p o a)..6 and (p o /3)t:t, are both elastic. And since they are path-homotopic,
Lemma 3d.7 shows that they are identical. Hence a.:b = /3o-t by uniqueness of
liftings.

One conclusion is that /3 crosses over a at most once. For if it crossed over twice,
there would be crossings (a, s) and (b, t) of a by /3 such that Im /3 ,:t 9 Im a, and
this possibility we just ruled out. Suppose now that the endpoints of /3 do not lie on

4opposite sides of a, meaning that for every link X E [alp, the points /3(0) and /3(1)
do not lie on opposite sides of X. If /3 were to cross over a, once, then we could find
a simple link X E [a]p over which #3 crossed exactly once, and hence the endpoints
of /3 would lie on opposite sides of X. 03

Because straight cuts are elastic, Lemma 7c.2 implies that a lifting of an elastic
chain crosses each straight link at most once. Hence if p is an elastic chain and r
is an arrangement of straight cuts, the cut list of p in F-the sequence of cuts in r
that it crosses over-is also its path code in F. If we choose one crossing from each
interval in which p crosses over a cut of F, we get a wire plan for p in r. Wire plans
are nothing more than path plans.

Lemma 7c.3. Let p be an elastic chain in a sheet S, and let r be a disjoint
arrangement of straight cuts in S. Every wire plan of p in F is a path plan for p
in F.

Proof. Let W be any lifting of p, and let 5 lift a cut in F. Straight paths are elastic,
and hence Lemma 7c.2 applies to " and 5. It says that crosses over j only if
separates the endpoints of , and then only once. (Of course, W does cross over j if

separates its endpoints.) Furthermore, " crosses over 5 at a point t if and only if
p crosses over -y at t. Hence for every wire plan of p, the crossings in that sequence
are the same as the crossings in some path plan for p. Since that path plan is
akin to all the others, by Lemma 7b.2, it remains to show that the crossings are
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ordered identically in the two lists. Let 51, ... , , be the r-liftings that separate the

endpoints of p, ordered as in Definition 7b.1. These simple links are are disjoint, and

each one separates W(O) and the preceding ones from the following ones. Hence the

ordering of the crossings in the path plan is the order in which they occur along p,
which is also their ordering in the wire plan. E3

Wire plans are easy to compute. One simply walks down the elastic chain,

choosing one crossing each time the chain crosses over a seam. Equivalently, for

each segment of the chain one can identify the crossings of seams that occur within

that segment (being careful not to duplicate the crossings that occur at joints), and

concatenate them to obtain a path plan for the chain. Algorithm R does essentially

this when constructing corridors for traces.

The elastic chains crossing a straight cut

Now we examine the more interesting aspects of elastic chains, namely, how they

interact with cuts. We begin with a corollary of Lemma 7c.2.

Lemma Tc.4. No two wires in a design have elastic chains that cross over, and

no elastic chain for a wire crosses over itself.

Proof. Let v and w be (not necessarily distinct) wires in a design fl; let . and p

be the elastic chains for v and w, respectively. If x and p cross over, then they have

liftings k and " that cross over. Let 9 E [Rp and 0 E [plp lift v and w. Because v
and Z cohere, the endpoints of Z lie on the same side of 9 (Lemma 4c.5). Hence by
Lemma 7c.2, Z and W' cannot cross over.' 03

The elastic-chain equivalent supports computation of link plans for all cuts that

are not subpaths of the elastic chains. It can be made to deal with all cuts, but

we will not need this extension. Let 0 be the standard elastic-chain equivalent of

a design Ql, by which I mean the set of elastic chains for the wires in fl, and let X
be a straight cut that is not a subpath of any elastic chain in b. First we need an

ordering on crossings of X by chains in . Let (c, t) be a crossing of X by p E 0,

and let (c,.t') be a crossing of x by p' E '. Let k, , and 7 lift X, p, and p' to

reflect the crossings (a, t) and (c, t'). Also let Z be the unique lift of w in [pp. We

say that (c, t) precedes (c, t') if and only if Z separates k(O) from the endpoints of

'. The cut plan of X in 0 is the sequence of triples (p, t, c) denoting crossings of X

by chains in D, ordered by precedence. (The following proposition shows that the

number of such crossings is finite.)

Proposition 7c.5. Let 0 be the standard elastic-chain equivalent of a design S1,

and let X be a straight cut that is not a subpath of any elastic chain in 0. The cut

plan of X in 0 is akin to the path plans of X in fl.
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Proof. Let j be any lift of X, and let p be the rubber band of a typical wire W E Q.
Fix a particular path plan for X in fl.

The result hinges on a one-to-one correspondence between the crossings by W
in the path plan and the crossings of X by p. Let (a, t) be a crossing of X by W
corresponding to the lifting Z which separates the terminals of . Let " E [PJp lift
p. Because the endpoints of j lie on opposite sides of ;Y, there is a crossing (c, r)
of by W. Moreover, this crossing is unique. Suppose there were another, say
(C, r'). Then XCx' and ':r, are both elastic, by Lemma 3d.2, and hence are identical
(Lemma 3d.7). Assume without loss of generality that [c, c] is a component of

-'(Imp-). Because p does not have X as a subpath, either c or c' lies in (0,1).
Hence " turns at a point in the middle of 5 , which is impossible, as the vertices of W
lie on Bd M. Thus k and W cross only at (c, r). Furthermore, the crossing (a, t) of X
by w is akin to the crossing (c, r) of X by p.

Now we show that every crossing (c, r) of X by p can be obtained in this way.
Given x(c) = p(r), let ;i be a lift of p satisfying 5(c) = (r), and let Z be the
corresponding lift of w. I claim that Z separates the endpoints of j, and hence gives
rise to a crossing of X by w in the path plan. For if not, then W, in intersecting j,
would have to turn at a point in the middle of j; Lemma 7c.2 forbids it to cross
over.

We have displayed a bijective correspondence between the crossing sequence
of X in 0 and the path plan of X in fl such that orresponding crossings are akin.
It remains to show that corresponding crossings are in the same order in both
sequences. This part should be clear, since the relation of precedence was expressly
designed to make it work. D

Corollary 7c.6. Let 0 be the any elastic-chain equivalent of a design Q, and
let X be a straight cut that is not a subpath of any elastic chain in 0. The cut plan
of X in 4, after its trivial crossings are deleted, is akin to the link plans of X in fl.

Proof. First take -0 to be the standard elastic-chain equivalent, and apply Propo-
sition 7c.5. Link plans are obtained from path plans by deleting trivial crossings
(Lemma 7b.3), and crossings that are akin are equally trivial or nontrivial. Now
replace 0 by a different elastic-chain equivalent 'P. What the cut plan of X in T be-
comes, when its trivial crossings are deleted, is something akin to the link plans of X
in an embedding T of QZ whose standard ECE is TP. Apply Lemmas 7b.2 and 7b.5
to get the result. 1

Corollary 7c.6 gives us a handle on the content of the straight cut X. From

the cut plan of X in 0, we first delete the trivial crossings. We then replace each

elastic chain in our plan by the wire that gave rise to it. This process must yield the
content of X. (When two crossing sequences are akin, each chain in one sequence
has the same terminals as the corresponding chain in the other sequence, and the
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terminals of the elastic chain identify the wire it came from.) From the content we
can derive the flows across the cut and many of its half-cuts, by Lemma 7b.4.

Determining precedence

Having computed elastic chains for all the wires in a design, one can incorporate
them into a data structure like the rubber-band equivalent. To be useful, such
a structure must help one compute which crossings of a cut by elastic chains are
trivial, and it must also specify the precedence relation among the crossings. The
problem of determining which crossings are trivial disappears in the sketch model,
as I show in Section 8C, so I will not discuss it here. (See Chapter 10 for further
discussion of this issue.) But the problem of computing the precedence relation
appears in both models, and the same solution applies.

When two elastic chains cross a cut at the same point, we determine the prece-
dence between the crossings by looking at where the two chains diverge. Suppose
(c, s) and (c, t) are crossings of a straight cut X by elastic chains a and r, respec-
tively. (Possibly a = r.) If these crossings are nontrivial, then a crosses over X at s,
and similarly r crosses over X at t. Assume without loss of generality that both a
and r cross over X from left to right, looking from X(O) toward X(1). Now choose
x and y as small as possible so that the subpaths a.,: and r,:t coincide, segment
for segment. (They may be parameterized differently.) I claim that (c, s) precedes
(c, r) if and only if one of the following is true:

(1) x > 0 and ao0. contacts r from the right, or
(2) y > 0 and T0 :, contacts a from the left.

One of the two cases must apply. Let j, a, and F be liftings that reflect the crossings
(c, s) and (c, t). The truth of the claim follows from Lemma 7c.3. Because a and r
do not cross over, neither do 2 and F, and the side of a that contains the terminals
of F is the side from which F contacts a, or vice versa.

This characterization of precedence is depends on the cut X only for an initial
orientation. Consequently, the precedence relation can be represented in terms of
orderings on the segments of elastic chains. It suffices to give a total ordering
to the elastic chain segments that overlap. As in Section 1B, one can construct
these orderings by adding one elastic chain at a time. When adding an elastic
chain, one uses conditions (1) and (2) above to determine which previous chains
lie immediately to its left and right. One can then insert the segments of the new
chain between them. Precedence is transitive, so the orderings resulting from this
process do indeed determine precedence among crossings.

Conformal embeddings

We turn now to a second structure for computing the plans of wires and the
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contents of cuts. Unlike the elastic-chain equivalent, it can only compute plans of
wires with respect to a specific, built-in pattern. The seams of the pattern need not
be straight, however. Given a design Q and a pattern F, one computes an embed-
ding T of ft that conforms with r by successively finding and removing collapsible
subpaths. Section 9B discusses this procedure in some depth; Proposition 7b.7 tells
us that it works.

Once the "conformal" design T is at hand, one can read off the link plans of
the wires in T and the cuts in r. Suppose the wire v E T is link-homotopic to the
wire Lo E Ql. The full plan of v in F is also its unique link plan in F, and hence (by
Lemma 7b.2) that full plan is akin to every link plan for w in F. Similarly, if X is a
cut of the design Q, the content of X in Q can be recovered from the full plan of )(
in T simply by replacing each wire v in this sequence by whichever wire w E Q is
link-homotopic to v. This fact follows from Lemma 7b.5.

What is remarkable, however, is how the contents of cuts not in F can be com-
puted using F and the conformal design T. Given a cut that conforms with F, one
can find a link-homotopic link that conforms with T as well, and thereby compute
the content of the original cut.

Proposition 7c. 7. Let the design T conform with the pattern r of nontrivial
cuts, and let a be a link that conforms with r. Some link/3 E [aL having the same
roots in r as a conforms with both F and T.

Proof. If a conforms with T, we are done. Otherwise we modify a until it conforms
with T, maintaining its other properties as well. Suppose therefore that a does not
conform with a wire v E T. First make at stable with respect to v: wherever
a touches v without crossing over, or runs along v for some distance, displace it
slightly. Because r is stable with respect to T, one can do so without introducing or
removing any crossings of cuts in r by a, and without moving any of these crossings
to an endpoint of a. In particular, the roots of a and the seam list of a in F remain
unchanged, and a remains free in r.

If a still fails to conform with v, we modify a to obtain a better link 3. By
Lemma 7b.6, there is a deviation a,:t across some subpath V,.:b. Recall the definition
of deviation: either a, sp v,:b, or else at:, * Vo:b is a trivial link. In either case the
link 3 defined by 3,:t = v.:b and /3(x) = a(x) elsewhere is link-homotopic to a.

Now we show that 3 shares the important properties of a. First of all, 0 makes
no more crossings with cuts in F than a does. If it did, then by rerouting VU:b

,0 to , one could eliminate some crossings of v in r. This cannot happen since
1, Conforms with 1. We conclude that / conforms with F just as a does. As a
consequence, the link /3 is free in F because it conforms with F. Finally, 0 has the
sarne roots as a. This could only fail if a(t) and v(b) lay in different borders, so we
can assume that the link at:.* Vo:b is trivial. Let U and a be liftings of v and a that

-22I

01

' - - "-"r -----
2; 0111 'r_-:,',ZTt~'.t .,I i .- : -',., ,ep €':"':', ,S 'e'



Section 7C Two Methods for Computing Plans

reflect the crossing (a, a); they share a fringe F containing a(t) and i3(b). We prove

that no F-lifting intersects F between those two points, whence their projections,

the endpoints a(t) and 0(t) respectively, lie in the same border of the pattern F.

Let (c, x) be the crossing of U by & in which c is closest to b, so that the image of

cg:b * ax:t is a web of one thread. The points of F between 5(t) and i(b) are the

only boundary points inside this web. Hence any F-lifting beginning in this portion
of F would have to leave the web, since the cuts in F are nontrivial. Hence it would
intersect either & or i, giving rise to an unnecessary crossing, and showing that
either a or v does not conform with F.

Having produced the improved version /3 of a, we make it stable with respect

to v and repeat the cycle. At each pass the number of crossings of wires in T by /3
decreases, so ultimately /3 is the desired link. D

We can restate Proposition 7c.7 in a weaker but more elegant form. Starting
with any link X, apply Lemma 4b.5 to find a link a E [XIL that conforms with
the pattern r. Then Proposition 7c.7 produces a link /3 E [X]L that conforms with
both F and T.

Corollary 7c.8. If a design T conforms with a pattern r of nontrivial cuts,
then every link-homotopy class contains a cut that conforms with both F and T. D

The real application of Proposition 7c.7, however, comes in Section 9B via the
following result. It gives us a class of links in which to search for the link 0 guar-
anteed by Proposition 7c.7, and shows how the other links in this class can be
rejected.

Corollary 7c.9. Let the design T conform with the pattern F, and let a be a
link that conforms with r. The content of a in r is the shortest wire list in T of a
link 0 that is free in r and whose roots and seam list in F are those of a.

Proof. Because a conforms with F, it is free in F. Hence Lemrnma 7a.9 applies to
a and any link 3 satisfying the hypothesis; it shows them to be link-homotopic,
whence by Lemma 7b.2 they have the same content. The content of a link / in T is
always a subsequence of the wire list of /3, and the two are equal precisely when
conforms with T.

Therefore it suffices to show that some link 3 that satisfies the hypotheses also

conforms with F. Proposition 7c.7 gives us a link /3 E faiL which conforms with
both F and T (and hence is free in F); also/3 and a have the same roots in F. Finally,
a and /3 both conform with F, and hence their seam lists in F are the sequences
of cuts in their respective link plans. These sequences are equal, by Lemma 7b.2,
because a =L /3-
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7D. The Geometry of Ideal Wires

To obtain a useful, constructive definition of ideal embeddings, we look more care-
fully at their geometry. So far our best characterization of an ideal wire is as a
projection of a minimum-length path that avoids its forbidden zones. This defi-
nition can probably be converted into a polynomial-time algorithm. For the sake
of efficiency and simplicity, however, we must avoid dealing directly with zones in
a blanket. Because ideal wires are taut, their shapes are powerfully constrained.
We can use these constraints to build up ideal wires from simpler pieces, as in
Algorithm R.

In the remainder of this chapter I show how to derive the ideal embedding
of a wire from a simple geometric specification: a set of corridors called a maze.
This section abstracts the important properties of ideal wires, and defines the maze
through which an ideal wire is routed. Section 7E then shows how to reconstruct
the ideal wire from its maze. The topological inputs to this process are the path
plans of the ideal wire in certain patterns and link plans for the cuts in those
patterns. These sequences, along with the endpoints of the ideal wire, are assumed
to be known. Due to technical difficulties, the construction does not apply to all
ideal wires, but it applies to all the wires we derive from sketches in Chapter 8.
Consequently, the routing method carries over to the sketch model, where the plans
can be efficiently supplied by the rubber-band equivalent and trace endpoints are
fixed. In that model it reduces to Algorithm R.

The segments and struts of an ideal wire

One thing we know about ideal wires is that they are taut and therefore tangent
to their barriers. A few definitions help to clarify this relationship. Recall that a
segment of a piecewise linear path a is a maximal linear subpath Qo:t of a with
s < t. Let w be a piecewise linear path, and let a be a straight path ending at a(t).
If w turns toward a(O) at t, then a supports w at t. If w.:t or wt:, is a segment of
, , then we also say that a supports this segment. For example, if a is a strut for

* an ideal wire w, and a(1) is not an endpoint of w, then a supports two segments

0. of ,;. A straight path a in R 2 is tangent to a straight path a if the line containing
a intersects the polygon

P(a) = { x : IzX - a'(o)1 = 11all }

at a(1), but does not intersect its inside. A straight path a in a sheet S is diagonal
if a(1) is a vertex of P(a) (in the terminology of Section ID, the slope of a is
diagonal), and a(O) is a vertex of a fringe of S. These definitions are contrived for
the purpose of stating the following important lemma.
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Lemma 7d.1. Every strut for an ideal wire is diagonal, and each segment of
an ideal wire is tangent to the struts that support it.
Proof. Let w be an ideal wire in a sheet S; let M be the blanket of S, and p: M -" S
the covering map. Suppose r be a strut for an ideal wire w at t. Lift r and
w to F and D so that F(1) = Z(t). Because r is a strut, 0 turns toward F(0)
at t. And because struts are marginal and nondegenerate, any straight half-link
r with ic(0) = F'(0) and 111 < IlIrl is forbidden to Z. All points sufficiently close
to Z(t) are visible from F(0). Thus in the neighborhood of Z(t), all points within
JlIrJ units of Z(t) are forbidden. Since w is evasive, it avoids these points, and hence
the segments of w supported by r stay at least 11h units from r(O). But they do
intersect r(1), so they are tangent to r.

An extension of this argument shows that r is diagonal. Let Q be a barrier
for Z containing the forbidden half-links F0., for z E (0, 1). Because Z turns at t,
the barrier Q has a convex corner at t. In a neighborhood of Z(t), the set Q contains
all points closer to F(0) than F(1). Hence T(1) lies on a vertex, not an edge, of the
polygon P(r). Again, all half-links obtained by translating FO:. a sufficiently small
distance along the base of Q contribute to Q. If r(0) lay on a fringe edge, then Q
would not have a convex corner at F(1). So "(0) is a fringe vertex, and therefore r
is diagonal. 0

A pleasant consequence of Lemma 7d.1 is that an ideal wire has exactly one
strut at each joint. Given that the strut is diagonal, its slope is determined by the
segments that it supports. This fact will be clarified shortly.

Representation of angles

Lemma 7d.1 shows that the shape of an ideal wire is heavily influenced by the
wiring norm. It is therefore convenient to relate angles and vectors in an ideal
design to a standard geometric representation of the wiring norm: its unit polygon
C = { x : I11 = 1) , the set of vectors of norm 1. We represent angles, or directions,
by points of C. If 6 and 6 are points of C, then an interval such as (b, 0) denotes the
points of C lying between 6 and 6 in clockwise order. The angle at which a path a
travels is denoted &, and defined as

or(1)-o!(0)
• ' = I0'(1) - 0'(0)11'

provided that a is not a loop. Normally a will be straight. The vertices A of C are
called diagonal angles. A straight path a in a sheet is diagonal if and only if b E A
and a(0) is a fringe vertex.

Whether one path is tangent to another depends only on their angles and where
they intersect. For each diagonal angle 6 E C, let 6b" and 6 T denote the angles
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T 8 Figure 7d-1. Angles as points on the unit
C polygon. Being a vertex of the unit poly-

-T ,gon C, the point 6 is a diagonal angle. Any
1-6-81 straight path tangent to a path a of an-

................. ............... ... g.....6..has..... gle...in...one.. of 6the ngclononedf hintervalser al
R(8) = R(6) and L(6) (dark borders), depending on
[5 -L, "T] whether it leaves a to the right or the left.

C

of the segments of C preceding and following 6, oriented clockwise. Let a and a
be straight paths, and suppose a(t) = a(1). The path a is tangent to a* leaving
P(a) to its right if and only if , lies in the interval R(6) = [&', 6,]. Similarly, a
is tangent to a leaving P(a) to its left if and only if & E L(&) = [-b±, T'j]. The
polygon C has inversion symmetry, and so (-6)-L = -(6b') and (- 6 )T = -(6T). In
other words, the operator (-) commutes with (L) and (T). One corollary is that

~L(&) =R(-o').

Tracks and ties

With a view toward the sketch model, we now abstract away from struts and
ideal wires. Recall that a joint of a piecewise linear path w is a point s E (0, 1)
at which w is not linear. A piecewise straight path w is a track if for every joint s
of w, there is a straight path or supporting w at s whose angle is diagonal, and the
two segments of w supported by a are tangent to a. We call a a tie for W at a.
Lemma 7d. 1 implies that an ideal wire is a track, and its struts are ties.

The angles of the ties of a track w are determined by w. Let a support a track
w at t; by symmetry we may assume that w leaves a to the right. Then a supports
two segments of w. Because those two segments are tangent to a, their angles lie
in R(&). If 6 and 0 are distinct diagonal angles, then the intervals R(6) and R(6)
intersect in at most one point. The two segments of w supported by or have different
angles, and so these angles determine a unique interval R(&). If w is an ideal wire,
then the angle 6r determines a unique strut or for w at t.

Angles of consecutive ties

Next we consider how the angles of ties vary as one moves along a track. Let
A be the set of diagonal angles, the vertices of the unit polygon C. If 5 is an angle
in A, let cw(b) denote the next angle clockwise in A, and let ccw(6) denote the
next angle counterclockwise in A.
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Lemma 7d.2. Let a and r support a track w at s and t, respectively, and
suppose wa:t is a segment of w.

(1) Ifa and -r lie on opposite sides of L, then i -
(2) If a and r lie to the right of w, then + E {&, cw(&)}.
(3) If a and r lie to the left of w, then i E {, ccw(6)}.

Proof. By symmetry we may assume that w leaves a to the right. Let a denote the
segment w,:t. Lemma 7d.1 says that a is tangent to a, which implies 6 E [6L, 6T].

Let K be the segment of w preceding a; it exists because s > 0. Then k E [&i, &T]

also, by Lemma 7d.1, and & lies clockwise of k. Therefore & E (&-I, & ] . If W

leaves r to the right, then we also have & E [i4 , rT]. Now let K be the segment
of w following a; it exists because t < 1. Then ic E [ J.,T] also, and & lies
counterclockwise of ic. Thus & E [*., +T). The only way the intervals (6.1, &T] and
[p.L, T) can intersect is if i" is either & or cw(&). This establishes conclusion (2).
Now suppose that w leaves r to the left. Then by the same kind of reasoning, a lies
in (_i..L, _T]. The only way this interval can intersect (&±, &V] is if i = -&. This
proves conclusion (1). Part (3), and the case of part (1) in which W leaves a to the r
left, follow by symmetry. D

Lemma 7d.2 is the key to the behavior of tracks. It implies, among other things,
that the angles of the a track's ties change incrementally as one moves along the
track. If a supports a track w, we write & for & or -6 according to whether w leaves
a to the right or the left. Lemma 7d.2 implies that if a and r are consecutive ties
of w, then E {(, cw(&), ccw(&)}.

Subpaths of a track

The prime consequence of Lemma 7d.2 concerns the angles at which subpaths
of a track travel. If b E A, the ties of angle ±b for a track w divide w into subpaths
that I call 6-subpaths. A path w.:t with s < t is a 6-subpath of w if

" either s = 0 or w has a tie of angle ±6 at a, and
" either t = 1 or w has a tie of angle ±6 at t.

Lemma 7d. 3. Let w.:t be a 6-subpath of a track w, and suppose Wa,:t is not
straight. For some 0 = ±6, every path a = wz:y with s < x < y < t satisfies

6 E [ 9T,--1], and & E (OT,-O "L ) if[x,y] = [s,t]. If a supports W at s, then 0 = 6,
and if r supports w at t, then 0 = -i.

Proof. Let x support w at a point x E (s, t). By Lemma 7d.2, R changes by at most
one step clockwise or counterclockwise as one moves along W,:t. Since R is never ±6,
it is trapped in some interval (0, -0) where 0 = ±6. Put N = [OT, _01]. We show
that every segment a of Wj,:t satisfies a E N. Each such segment is supported by a tie
.K with R E (0, -6). Lemma 7d.1 says that a is tangent to K, which means a E R(R)
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0 G 0

Figure 7d-2. A track and its ties. The grey and black segments compose a track
under the octagonal wiring norm of Figure 7d-1. Ties for this track are shown as
thin lines. Near each tie a is a small picture of the unit polygon with a tick mark
to indicate the diagonal angle &. This angle moves by at most one vertex from one
tie to the next. One diagonal angle 6 (roughly, north-northwest) is singled out.
Joints corresponding to ties of this angle are shown as black dots; they are the
endpoints of the track's "6-subpaths". Black segments are its straight b-subpaths.
The dotted path, whose joints are shown as small circles, is a "6-route" for the
track, as discussed in Section 7E. It is shown only where it does not overlap with
the track.

if w leaves r. to the right, and & E L(-R) if w leaves r. to the left. In either case
lies in the interval [R', -R] which is contained in N when R E (0, -0). Therefore
cr E N as desired. Another elementary fact is that the sum of two vectors whose
angles lie in N has angle in N. Hence if s < x <y !5 t, then the path a -:-W=
satisfies 6 E N by induction on the number of segments of a. Moreover, because
Wit turns, it contains segments of angle strictly between 9' and 9±*. Hence if s = x

and y = t, then 6 lies in the interior of N.
Iremains to consider the relationship between 0 and the ties, if any, that support

w at s and t. Let a be a tie of angle ±b supporting w at s, and suppose first that w
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leaves a to the right. Then Lemma 7d.2 implies that the next tie r after a' satisfies
k = cw(&) and lies right of w, since k y6 ±6 = ±b. Therefore k = k E (0, -0)
only if 0 = & as claimed. Now suppose w leaves a to the left. Then by the same
reasoning, k = ccw(o) and w leaves K to its left. Hence R = -k = ccw(-&), and so
R E (0, -0) only if -0 = -6 as claimed. Now let r be a tie of angle ±6 supporting
w at t. Symmetrical reasoning shows that 0 = -f. E3

Cuts that contain struts

Now that we understand some intrinsic properties of tracks, we return to ideal
wires. Lemma 7d.2 leads us to an important fact about the cuts that contain struts.

Lemma 7d.4. Let a be a strut for an ideal wire w at s, and let X be the straight
link of which ar is a subpath; say a = XO:a. Then the crossing (a, s) is similar to no
other crossing of X by w.

Proof. Let Z and k be lifts of w and X satisfying k(a) = Z(s). Let a be the lift

XO:a of a. Because a is a strut, it is nondegenerate, and hence j(O) does not lie on
a terminal of Z. Furthermore, Z crosses over j at .. If another crossing of X by W
is similar to (a, s), then Z crosses back at some point at some point (t) = k(b),
where b > a. We derive a contradiction from this assumption. We may assume that
w leaves a to its right.

If t is chosen as close to s as possible, then the loop A = W,:t * Xb:o is simple.
Let N be the inside of this loop. By Lemma 3c.6, the internal angles of A sum to
(n - 2)ir, where n is the number of vertices of A. Hence as one travels around A, the
angles of the segments of A must rotate through a total of 21r in the direction of N
(in this case, counterclockwise). Not all of this rotation can occur at the points (a)
and k(b). Equivalently, let us associate with each vertex Z(x) of A for a < x < t the
angle F derived from the strut T for w at w(x). This angle begins at &, and must
rotate counterclockwise past &. Furthermore, if i is thought of as a vector based at
Z(z), it always points into CIN.

Lemma 7d.2 implies that as one travels along Z, the angles -F change by at most
one step clockwise or counterclockwise for each joint visited. Hence there must be
a point x in (s, t) whose associated angle is &, and such that the next associated
angle is counterclockwise from this. Again by Lemma 7d.2, this can only happen

'4 if w has a strut r on its left at x. If F is the lift of r with F(1) = Z(x), then F
intersects N. And here we obtain our contradiction. For the lift F is parallel to a
and cannot leave C7 N via the middle of XjG:b. It follows that F must leave N at
some point in Im &5o:t. But because r is a strut for w, the points F(z) for z < 1 are
forbidden to &. Therefore Z is not evasive, a contradiction. 0
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Tunnels and mazes

The final result of this section relates an ideal wire to a set of corridors. Before
explaining this relation, however, we replace the concept of corridor with a more
technically convenient one. The new concept is more restrictive, and it uses straight
paths (gates) in place of the line segments (doorways) that form a corridor.

Definition 7d.5. A tunnel is a finite sequence (,o, A1,..., A,,,, A,+I ) of linear
paths in the plane, of which the first and last are constant, together with a sequence
0 = to < t, < ... < t,, < tn,+l = I such that

(1) no two consecutive paths Aj and Ai+i intersect, and
(2) for 1 < i < m, there is a line L of slope ±b containing Im Ai such that neither

open half-plane of L contains both Im Ai-i and Im Ai+,.
For 1 < i < m + 1, the path -ti is called a gate at parameter ti. If all the lines L
in (2) can be chosen to have angle ±b, then the tunnel is a 6-tunnel.

Recall that Algorithm R builds several corridors for each wire, one per diagonal
slope. (A diagonal slope corresponds to a pair ±b of diagonal angles.) In the new
terminology, these corridors become the tunnels in a maze. A maze is a set of
tunnels which have the same initial and final gates: one 6-tunnel for each diagonal
slope 6.

What tunnels and mazes do is specify a set of paths. A path through the tunnel
in Definition 7d.5 is any path a: I -+ R 2 such that a(ti) E Im Ai for 0 < i < m + 1.
A path through a maze is any path through all the tunnels in the maze. Minimum-
length paths through tunnels and mazes are of particular interest to us, and can be
characterized by a simple geometric condition called tightness. A gate A restrains a
PL path c at a point t E (0, 1) if a(t) is an endpoint of A and either A is constant or
a turns away from the other endpoint of A at t. A PL path a through a tunnel (or
maze) is tight in that tunnel (or maze) if for every joint t of a, the tunnel (or maze)
contains a gate with parameter t that restrains a at t. Proposition 7e.1 shows that
the minimum-length path through a tunnel is, up to parameterization, the unique

*- tight path through the tunnel.

A maze for an ideal wire

I now offer a construction which, for most ideal wires, leads to a maze in which
0" that wire is tight. As we show in Section 8C, it applies to all ideal embeddings of

designs derived from sketches. The maze for such a wire can be easily computed
from the elastic-chain equivalent of the design, and as we show in the Section 7E,
the ideal wire can be reconstructed from the maze. The relation between the ideal
wires and their mazes will be used in Section 8C to explain Algorithm R.
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To define the maze for an ideal wire w, we first need a special collection of
patterns. For pair ±6 of diagonal angles, we assume we are given a pattern r with
three properties.

(1) Every cuts in F has angle ±6.

(2) Every strut for w is a subpath of some cut in F.
(3) For every seam -y E r, the line containing -y separates the interiors of the

pieces of r that include Im -.

The 6-tunnel in the maze for w is defined as follows. Its first gate is wo:o, its last
gate is wl.:1, and it has one intermediate gate for each element of a path plan for W
in F. Suppose the ith element of this plan is a crossing (c, t) of a cut -y E r by W.
We may assume that t increases with i. Let A and B denote the terminals of 'y,
and define a and b by the equations

11o:.[ -- flotW(7o:c,0) + width(A)/2 + width(w)/2, (7-6)

[1-ti:bll = flow(7t1:c,fn) + width(B)/2 + width(w)/2. (7-7)

If the half-cut Xo:c for w at r is trivial, however, then put a = 0, and put b = 1
if Xl:c is trivial. The ith gate is the path 7.b at parameter t. By Lemma 7b.2, all
path plans for w in F are akin and include the same sequence of cuts, the path plan
we choose does not affect the gates in the tunnel, but only affects the parameters t.

One can easily check that these gates form a 6-tunnel, using the fact that the
sequence of cuts in the path plan of w is also the path code of w. Condition (1)
in Definition 7d.5, namely that consecutive gates must be disjoint, holds because
the seams in F are disjoint and no seam of r appears twice consecutively in the
path plan. Condition (2) in Definition 7d.5 follows from property (3) of F, since
consecutive seams in the path plan belong to the same piece of r.

Building the maze

Excepting the parameterization information, which is not important in the ap-
plications, and excepting the first and last gates, the 6-tunnel for the ideal wire W
can be constructed without knowing w. All one needs is a way of computing the
path plan of w in the pattern F, or something akin to it, and a way of locating the
crossings in this plan within the path plans of the cuts in F, in order to compute
the flows across the half-cuts in equations (7-6) and (7-7). In what follows, we let
9 be the design and F the pattern for the 5-route of w.

One way is to use an elastic-chain equivalent 0 of Q that contains the chain p
of w. By Lemma 7b.2, every path plan of p in the pattern F is akin to the path plans
of u in F, and the sequence of cuts in the two plans is the same. Fix path plans for
p and w in F. Let the ith crossing of the path plan for p be the crossing (y, d,r)
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of - E F, and let the ith crossing in the path plan for w be the crossing (-y, c, t).
These two crossings are akin. Take the interesting case where the crossing (d, r) is

nontrivial, and suppose that the triple (p, r, d) is the kth crossing out of n in the link

plan of - in t. We can apply Corollary 7c.6 to this link plan: Since p crosses over

-, the straight cut -y cannot be a subpath of any elastic chain in t, by Lemma 7c.4.

By Corollary 7c.6, the link plan for - in 4 is akin to every link plan for -y in the

design 0, and in particular to one that includes the crossing (w, t, c) akin to (p, r, d).

Hence from the link code of - in 0 we can derive the link code W, ... , w, of f

in Q, simply by replacing each elastic chain with the wire that gave rise to it. We

also know that in some link plan for - in fQ, the triple (w, t, c) is the kth crossing.

Hence by Lemma 7b.4 we have

k-1 n

flow(0o:,, l) = Z width(wi) and flow(7,:c, l) = E width(w,).
j= 1 ilk+ 1

Combining these equations with (7-6) and (7-7), we get

k-1

I[y1o:.aI = width(A)/2 + width(wk)/2 + width(wi); (7-8)

n

11-t..6[I= width(A)/2 + width(Wk)/2 + 1 width(w). (7-9)
i=k+l

(Here A and B are the terminals of -y.) Equations (7-7) and (7-8) tell us that the

_ ith gate in the 6-tunnel for w is y.:b. Gates derived from trivial crossings can be

handled in the same framework.
Another method, which only generates the gates corresponding to nontrivial

crossings, starts from an embedding T of fl that conforms with the pattern I'. If
v E T is the wire that embeds w, then the full plan of v in r is also its unique

link plan, and hence is akin to the link plans for w in r. As Lemma 7b.3 shows,

every such link plan consists exactly of the nontrivial crossings in a path plan for W
in F. At the same time, those crossings (or rather, their reverses) are part of the
full plans in T of the cuts in F, which also equal the link plans of those cuts. Hence

Lemma 7b.4 applies as above to determine the gates in the 6-tunnel of w, or at least
those corresponding to nontrivial crossings. In the application of this method to

the sketch model, the gates derived from trivial crossings can be ignored.

Tightness of the ideal wire

The following result is our geometric characterization of ideal wires. It is also
the precondition for the reconstruction process of the next section.
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Section 7E Routing Through a Maze

Proposition 7d.6. .n ideal wire is a tight track through its maze.

Proof. Lemma 7d.1 shows that the ideal wire w is a track. To prove that W passes
through its maze, it suffices to show that w passes through its 6-tunnel for arbi-
trary 6. We adopt the notation of equations (7-6) and (7-7), so the ith gate in
this tunnel is ly:b at parameter t, and w(t) = y(c). We need only prove a < c < b.
If Xo:c is a nontrivial half-cut, then its flow does not exceed its capacity because
w is evasive. Thus the right-hand side of equation (7-6) above is at most IlXo:cIl,
and IIXo:.ll > Ixo-II implies a < c. Or if Xo:, is trivial, then c > a = 0. Similarly,
equation (7-7) implies c < b if X1:c is nontrivial, and if Xl:c is trivial, then c < b = 1.

It remains to show that w is tight in its maze. Supposing that t is a joint of w,
we show that w has a gate at t that restrains w at t. Because w is taut, it has a
strut a at t, and by Lemma 7d.1, the angle 6 = 6, is diagonal and the point a(O)
is a fringe vertex. Let r be the pattern for S from which the 6-tunnel for w was
derived. Then a is a subpath of a unique diagonal cut -y E r. Assume that ar = -t0:,;
the other case a = -t/:c is symmsotrical. Apply Lemma 7d.4 with -y in place of X
and (c, t) in place of (a, s). It says that if j and Z are lifts that reflect (c, t), then
they make no other crossings. Because a is a strut, ; crosses over j at t. Hence 5
separates the endpoints of Z. We conclude that (c, t) appears in any path plan for w
in 1. Consider the corresponding gate 7a:b of the 6-tunnel. Because a is marginal,
and hence a - oY.O in equation (7-6). Because a is nontrivial, the crossing (c, t) is
nontrivial. Therefore c = a, and %a:b begins where a ends. Finally, since oa supports
w at t, the gate 7G:b restrains w at t. 13

7E. Routing Through a Maze

Now we return to the abstract setting of tracks and ties in order to justify a general
routing method. Given a maze in which a track is tight, we prove give a general pro-
cedure for reconstructing the track from the maze. The shortest path, in euclidean
arc length, through a tunnel of a maze is called a partial route for the maze. No
partial route by itself need by a path through the maze, but they can be combined
into a tight track through the maze if any such track exists. This result implies
that an ideal wire may by efficiently constructed if its endpoints are known. More
importantly, it allows us to prove in Section 8C the correctness of Algorithm R.

The intuition behind our construction is the following. Starting from a track
and a maze in which it is tight, we remove all the gates restraining the track except
those of a particular diagonal slope ±b. The track then relaxes to one of its partial
routes. Compare Figure 7d-2. At a joint of the track supported by a tie of angle ±b,
the path does not move. The segments incident on that joint used to be tangent
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to the tie, and after relaxation they may make more acute angles with the tie
than before, but they cannot make more obtuse angles than before. Similarly, the
straight b-subpaths of the track do not move. On the other hand, consider a new
joint formed during relaxation. Such joints can only be formed within parts of the
track that used to be nonstraight 6-subpaths. By Lemma 7d.3, all segments of those
b-subpaths have angles that make them ineligible for tangency with ties of angle ±b.
As the track relaxes to its partial route, those segments cannot become tangent to
ties of angle ±6; one of the two segments incident on a new joint always makes
too obtuse an angle. (We prove this.) Hence we can distinguish the joints of the
partial route that are retained in the track by the angles of the incoming segments.
Similarly, we can determine which segments of the partial route are retained in the
track by looking at their angles; they have to be tangent to ties of angle ±b. Using
some information from Lemma 7d.2 about how the track is allowed to turn, we can
combine the retained joints and segments to build the track.

Partial routes

Our source of information on partial routes is the following crucial result. Two
piecewise linear paths a, /3: I --+ R' are alike if they turn at the same points, and
whenever a and /3 turn at t E (0,1) we have a(t) = #(t).

Proposition 7e.1. A path through a tunnel has minimum euclidean arc length
if and only if it is tight. All tight paths through a tunnel are alike. 13

The proof of Proposition 7e.1 is not trivial. I omit it only because essentially
the same arguments that led up to Corollary 3d.7 apply here.

Restricted routes

To relate the partial routes in a maze to a tight track through the maze, we
introduce restricted routes that are more closely tied to the track. Later we prove
the restricted and partial routes equal, thus obtaining more information about the
latter. Let w be a tight track through a maze, and let 6 be a diagonal angle. The
partial route through the 6-tunnel of this maze is called the 6-route of W. The
restricted 6-route of w is the shortest path through a restricted version of the
maze's 6-tunnel. The restricted tunnel also begins at w(0) and ends at w(l), and
its ith gate is derived from the ith gate in the 6-tunnel, say -y at parameter t. If -y
restrains the 6-route at the point t where it passes through Y, then the ith gate is
the constant path at w(t). Otherwise the ith gate is just 7.

Any path through the restricted 6-tunnel is also a path through the original
6-tunnel. Thus the restricted 6-route, call it p, is just like the 6-route of w except
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that it has to pass through the endpoints of every tie for w of angle ±6. The path

w passes through its restricted 6-tunnel.
Lemma 7e.2 is the main result concerning restricted routes.

Lemma 7e.2. Let p be the restricted 6-route of a track w. For each 6-subpath

W8:t Of w, either
(1) ",:t is straight and equals pa:,, or
(2) each segment a of p,:t satisfies & E [0', -6'], where 0 given by applying

Lemma 7d.3 to W,:t.

Proof. The path w has either endpoints or ties of angle ±6 at s and t, and hence

p(s) = w(s) and p(t) = w(t). If w,:t is straight, then it must equal pa:t since w is

a path though the tunnel that defines p and straight paths are always minimum-
length. So we may assume w,:t is not straight and prove case (2). Naturally, our

primary tool will be Lemma 7d.3, which defines supporting angles. That lemma
gives us an angle 0 E {6, -6} such that every subpath a = ,:p with a _< x < y :_ t

satisfies & E [0', -0±.
A subgoal is to prove that the angles of the segments of P,:t never approach 0.

First we show if one segment of p has angle in (6, -6), then the next has angle in

[6, -61. Thinking of 6 as "north", this claim says p cannot switch from pointing
east to pointing west without pointing exactly north or south in between. The
reason is that p is a minimum-length path through a 6-tunnel. By the definition of
6-tunnel (see Definition 7d.5), if -y is a gate for p other than the first or last, then -1
is contained in a line of angle ±6, and the gates preceding and following Y do not lie
on the same side of this line. Suppose p passes through the gate -Y at s, and suppose

the segment p,:, preceding p(s) has angle in (6, -6). Then the gate preceding -t lies

east of -f, and the following gate cannot lie east of -f. Consequently the angle of the
segment P,:t following p must lie in [6, -6J.

Next we prove by contradiction that no segment of p,:t has angle 0. Suppose

PX:Y is a segment of p whose angle is 6. Because p is tight in its tunnel, the points
p(x) and p(y) must be endpoints of gates; these gates are collinear and disjoint.

4 Since W.:t passes through the same gates, its subpath wz:y also has angle 0. But by
Lemma 7d.3, the angle of w.,:, lies in the interval [0', -0] which contains -0 but
not 0.

The clockwise ordering on C can now be broken; it gives rise to a total ordering
on the angles of segments of p:,. We write &' < 6 for 6' E (0, 6). It remains to
prove that the segment a which minimizes & satisfies & > 0', and that the segment
a which maximizes & satisfies & < -0'.

The two cases are essentially alike, so we consider only one. Let a be the segment

of p that minimizes a. We may assume 6 E (0, -0), and we have a = p,,:p where
s < x < y < t. The points w(x) and w(y) lie on the gates containing p(x) and
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Figure 7e-1. A restricted route compared
to its track. The shaded path represents

. .... the b-subpath w,:t in Lemma 7e.2. The
_ . striped and dotted segments make up the

corresponding subpath Pa:t of the restricted
6-route. (The angle 6 is shown on its unit
polygon.) Dark segments are gates, and the
striped segments are the segments of P:t

0---* north whose angles are "minimal" and "maximal".

p(y), respectively. Write ic = w,,,. Lemma 7d.3 implies ;C > 0'. It suffices to show
that p(x) is at the north end of its gate, and p(y) is at the south end of its gate,
for then & is maximal over all paths between the same gates. In particular, & > k
which implies a > 0T

. Now either x = s, in which case the gate corresponding
0 to x is a point, or else x > 9, when the segment preceding a must have greater

(more clockwise) angle (but still within (0, -01). Hence p turns at z, whence by
-. Proposition 7e.1, p(x) is an endpoint of its gate. Moreover, since p turns to the
-S north at x, the point p(x) is the north endpoint of its gate. Entirely symmetrical

reasoning proves that p(y) is the south endpoint of its gate. 13

Among other things, Lemma 7e.2 implies that restricted and partial routes are
alike. This fact is a consequence of Proposition 7e.1 and the following lemma.

Lemma 7e.3. Let p be the restricted 6-route of a track w. If w has a tie a at s
with & = ±6, then a supports p at s.

Proof. Because a is a tie, w turns toward o(O) at s. In particular, the angles of
the segment of w following s and the reverse of the segment of w& preceding s lie in

some interval (4,, -4k) that contains -&. Because these two segments are tangent
to o, the angles &." and -&' also lie in (4,, -). Let W,:t be the &-subpath of w that
begins at s, and let a be the segment of p that begins at s. Lemma 7e.2 says that
either a = w,:t or else a E [0', -81], and Lemma 7d.3 pegs 0 at 6. In either case &
lies in (4, -4). Now let w,. be the o-subpath of w that ends at s, and let a be the
segment of p that ends at s. Again, Lemma 7e.2 says that either a = w,: or else

d E [0T -0'L]. This time a plays the role of r in Lemma 7d.3, and hence 0 =

Therefore -6 E [6T, _6,T] C (0, -0).
Thus the segments a and a' of p incident on s have angles in (4, -4). Moreover,

p is a shortest path through a 6-tunnel. Hence p(s) lies on a gate y in this tunnel,
S and the line L through a separates the gates preceding and following - in the tunnel.

(More precisely, neither open half-plane of L intersects both those gates.) In the
same sense, a and a' are also separated by the line. We conclude that a(O) is not

-238-

1111 f' "CV F1



Section 7E Routing Through a Maze

exterior to the angle formed by a and a'. In other words, p turns toward u(O) at 3;

the tie a supports p at s. 0

Corollary 7e.4. Restricted and partial routes are alike.

Proof. Let 6 be a diagonal angle; let w be a tight track with restricted 6-route p.

By Proposition 7e.1 and the definition of b-route, it suffices to show that p is a tight

path through the 6-tunnel for w. Where the 6-tunnel agrees with the restricted 6-

tunnel, this behavior is guaranteed by Proposition 7e.1. Elsewhere it is guaranteed

by Lemma 7e.3. For suppose -y is a gate at parameter s in the 6-tunnel for w, and

suppose that -y restricts w at s; say y(O) = w(s). Because w is tight, it is supported

by a tie a at s, and 6 = -i. Now by Lemma 7e.3, the b-route p is also supported by

a at a. Consequently -t restrains p at s. 03

Retained joints and segments

The precise statement of the correspondence between tracks and their partial

routes requires some new definitions. If 6 is a diagonal angle, a 6-rail of a track w

is a straight 6-subpath of w. All 6-rails are generically called rails. The 6-rails are

those we can identify from partial routes. Let s be a joint of a 6-route p, let a be a

tie supporting p at s, and let p7:o and po-t be the segments of p just preceding and

following s. (Note that p must turn at s.) The joint s is retained if Pr:, and po:t,
when reflected through p(s), intersect the polygon P(a) at a(1) only. If p is not

straight, a segment a of p is retained if for every path a that supports it, say at 8,
the joint s is retained and a does not intersect the inside of P(a).

The definition of retention corresponds directly to the rules given in Section 1D

for merging partial realizations. For our purposes here, it is convenient to restate

them in terms of angles. If a supports the partial route p at s, the joint s is

retained if the segments a and a' preceding and following s, respectively, satisfy
& [6,, -- ] and &' 64]. A segment a = p,:t is retained if (1) aL $ p,

and (2) those points of {s, t} that are joints of p are retained, and (3) every path a

supporting a satisfies 6 E [6 ±,T&] U [-L, _6,T].

Proposition 7e.5. Let w be a tight track through a maze. The joints of w

are the retained joints of the partial routes of w. The rails of w are the retained

segments of the partial routes of w.

Proof. Let 6 be a diagonal angle, and let p be the restricted 6-route of w. By

Corollary 7e.4, we may use p in place of the 6-route of w. We show that the joints

of w supported by ties of angles ±6 are precisely the retained joints of p, and that

the 6-rails of w are precisely the retained segments of p.
First consider joints. Let s be a joint of w corresponding to a tie a of angle ±6;

then s is also a joint of p, by Lemma 7e.3, and a supports p at s. Let w,:° and Wo:t
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be the 6-subpaths of w preceding and following s, respectively; let a and a' be the
segments of p preceding and following s. To show that s is retained, we must prove
& [6,T, _-] and 6' [-r', &l). First apply Lemmas 7e.2 and 7d.3 to Wr:a. There

are two cases.

(1) If w,:, is straight, it equals a and is tangent to or. Then we have & E [d.L, dT)

or & E (-r-,- according to whether p leaves a to the right or the left.

(See the proof of Lemma 7d.2.) In either case 6 f [d6T, _r-L].

(2) Otherwise each segment of P,:,, and a in particular, satisfies & E [0T, _0L]

where 0, according to Lemma 7d.3, is -6a. Simplifying, & lies in the interval
[-&T, &-], which does not intersect its opposite [6rT, _r-L].

The analysis of a' uses the same method.

(1) If u;,:t is straight, it equals a' and is tangent to a. Then we have &' E (61', 6,T]

or & E 1_6,-L, -r T ) according to whether p leaves a to the right or the left.

In either case &' 0 [-r T , 6rl].

(2) Otherwise each segment of p.:t, and a' in particular, satisfies &' E [OT, _ 0 1)

where 0, according to Lemma 7d.3, is 6r. Therefore &' does not lie in the
opposite interval [_6rT, &.L].

We conclude that the joint s is retained.
Now let s be a joint of p such that w is not supported by a tie of angle ±6 at s;

we show that s is not retained. Let w,.:t be the 6-subpath of w with s E (r, t), and
apply Lemma 7e.2. If W,:t were straight, it would equal p,:t, and s could not be
a joint of p. Therefore the other case applies, so every segment a of p:t satisfies
a E [8 T, -8--] where 0 = ±6. Now let or support p at s, and let a and a' be the
segments of p preceding and following s. If 0 = r, then & E [&T, -61], and if
0 = -6r, then &' E [-6rT, &']. Either way s is not retained. We conclude that the
retained joints of p are exactly the joints of w supported by ties of angles ±6.

Now consider rails. Suppose W,:t is a 6-rail of w. Then W.:t is a straight 6-subpath
of u, which implies (Lemma 7e.2) that a = p,:t is a segment of p and a 3 p.
Furthermore, the endpoints of a that are joints are retained, as we just showed, and

* a is tangent to at least one tie of slope ±6. Therefore & E [&I, JrT ] U [-&L, -&T],
and a is retained. Now let a be a segment of p that is not also a segment of W.
If either supported endpoint is not retained, then a is not retained. Otherwise a
connects the endpoints of a 6-subpath of w. Then Lemma 7d.3 implies & E (0T, -0)
where 0 = ±6. Consequently a is not retained, and this observation completes the
proof. 0

Merging partial routes

Proposition 7e.5 and Lemma 7d.2 imply that a tight track through a maze may
V' be constructed by merging its partial routes. If all the partial routes are straight,
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Section 7E Routing Through a Maze

then so is the track. Otherwise there is exactly one partial route whose first segment
is retained. One constructs the track beginning with this segment, and proceeding
to merge the retained vertices of the partial routes according to the following rules.

(1) Suppose the vertex just added was the joint s of the partial route p. If p
has a retained segment p,:t beginning at s, then add the other endpoint p(t).
Stop if t = 1, and otherwise repeat.

(2) Choose the partial route whose angles are clockwise or counterclockwise from
that of p, according to whether the track turns right or left at s. (If a
supports p at s, then the track turns right at s if and only if the angle of
its preceding segment lies in (6,, -6).) Add the first unused retained joint of
the new partial route, and return to step 1.

When we run out of retained segments for a given diagonal slope, and hence fall
through to step 2, the next segment is supported by ties of different slopes and
hence is not retained. Instead, the next vertex is a retained joint of a different

0 partial route, the choice of which is determined by Lemma 7d.2. The correctness of
the whole procedure may be proved by a straightforward induction.

04
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Chapter 8

Return to the Sketch Model

At last we return to the model in which the algorithms of Chapter 1 operate. With
the knowledge gained in previous chapters, we can now establish the correctness
of Algorithm T, which tests the routability of a sketch, and Algorithm R, which
produces an optimal routing of a routable sketch.

As the specifications of Algorithms T and R are fairly abstract, so their cor-
rectness proofs also avoid formal analysis of low-level details. That is, I am more
interested in justifying the ideas behind the algorithms than any particular imple-
mentation of those ideas. (I do pay some attention to the algorithms' primary data
structure, the rubber-band equivalent, because it accounts for their fast running
times.) Most of the ideas behind Algorithms T and R were developed in Chapter 7,
so the present chapter is fairly short. Its main concern is building a correspondence
between sketches and designs, in order to apply the results of Chapters 6 and 7 to
the sketch model.

There are two major differences between the sketch and design models. One is
that the terminals of a trace in a proper sketch cannot have overlapping territories,
whereas the terminals of a wire in a proper design can have overlapping extents. This
discrepancy has already been addresses through the definitions (at the beginning of
Chapter 7) of 0-routability and 0-safety for designs. The second difference, which
is much more profound, is that terminals in a sketch are points, whereas terminals
in a design have positive diameter. Since the width of a wire cannot exceed the
width of its terminals, the extent of a wire-containing article of a design must
have bulges at each end of the wire. In a sketch, however, the territory of a trace
may subsume the territories of its terminals. Consequently there are sketches that
cannot be adequately represented by any design. Instead we must relate a sketch
to a sequence of designs with smaller and smaller fringes. Disregarding certain
technicalities, the sketch model is the limit of the design model as fringes collapse
to points and line segments.

What follows is a brief outline of this chapter. The connection between sketches
and designs is defined in Section 8A and strengthened in Section 8B. These two
sections culminate in proofs of the sketch routing and routability theorems (see
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Section 1A), which underlie Algorithms R and T. Then in Section 8C we combine
these theorems with the results of Chapter 7 to explain the workings of the rubber-
band equivalent and, assuming that this data structure does its job and that the
scanning procedures are implemented correctly, prove that Algorithms T and R
perform as advertised.

8A. The Correspondence Between Designs and Sketches

This section describes a standard method of converting sketches to designs, and
thus prepares us to recast results concerning designs in the sketch model. As we
show, the correspondence preserves basic properties like homotopy: if one sketch
is a realization of another, then the design corresponding to the first sketch will
be an embedding of the design corresponding to the second. This section gets as
far as showing that the congestion of a cut in a sketch equals the congestion of
the corresponding cut in the design. The next section develops the correspondence
further.

We relate designs to a subclass of sketches that is restricted in two ways. First,
we concentrate on sketches that include a bounding obstacle, an island that encloses
all the other elements of the sketch. It corresponds to the outer fringe of a design.
One can add a bounding obstacle to any sketch; by making it sufficiently large,
the routability and routing problems are unaffected. Second, we assume that the
routing region of a sketch is connected. Again there is no loss of generality, because
a sketch whose routing region is not connected can be analyzed as two or more
independent sketches; the wires in different components of the routing region do
not interact.

Restricted sketches

For the purposes of this chapter, a sketch is an ordered pair 0 ), where E, is a
* finite set of features (points and line segments in RI) and E) is a finite set of traces

for E. Let X denote the union UE - A trace for '--is a simple path in R' such
that 0- 1(X) = {O0, 1}, and the terminals 9(0) and 0(1) of 0 are pointlike features
of --- they are points, and they intersect no other features in '-!. In addition, the
sketch (E ) must satisfy three conditions:

(1) No two members of -''intersect other than at their endpoints;

(2) Some of the features in EEform a polygon C such that CU inside (C) includes
X and every trace in 0; and

(3) The routing region inside(C) - X is connected.
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The components of X are the islands of the sketch (-, 9); the island containing C
is called the bounding obstacle. The islands and traces of (E, 0) are also called the
elements of that sketch.

For most of the definitions relating to sketches, I refer you to Section 1A. But
there arc. two sets of definitions we should review: those concerning bridges, and

-- those concerning congestion. Formally, a piecewise linear path a in R 2 is a bridge
for the features if a - 1 (X) = {0, 1), where X is defined as before. The natural
notion of homotopy in the sketch (:, 9) is that of a bridge homotopy, which is a

e. piecewise linear map F: I x I - R2 such that F(-, t) is a bridge for E for every
t E I. If both F(O, •) and F(1, • are constant, then we call F a trace homotopy
also. Two bridges a and 03 are bridge-homotopic (or trace-homotopic) if there is a

5 bridge homotopy (or trace homotopy) F such that F(-, 0) = a and F(., 1) = fl.
In this chapter we consider a cut of a sketch to be any bridge in that sketch.

The entanglement of a cut and a trace is the minimum number of crossings of that
cut by any route for that trace, and the congestion of a cut is a weighted sum of
entanglements. The point that needs clarification is the definition of crossing. A
crossing between two bridges a and f3 is a point (s, t) E I x I such that a(s) = 0(t)
and neither s nor t is 0 or 1. In other words, crossings that occur at endpoints are

,1. ignored.

Overview of the correspondence

The correspondence between sketches and designs is parameterized by a positive
quantity f that we think of as decreasing to 0. Given a sketch E with features E
and traces E, and given a sufficientlysmall quantity f > 0, we construct a sheet S,
from E and a set of paths Q, from 0. For sufficiently small f the set fQ is a design
of wires in the sheet S,. One can then relate cuts in the sketch E to cuts of the
sheet S , and relate realizations of traces in T to embeddings of wires in the design
Q,. If X is an object related to E, the corresponding object in S. will be called
",(X), or simply X, the parameter c being understood. If Y is an object related to

.S1, the corresponding object for E will be called 0,(Y) or Y1. As a mnemonic, note
that the object X' lies in the flat manifold S,.

the sketch (-, e) - the design [, on S,

the sketch (:, E) 1 -- the design [, on S,

The operations called , and 0, are not, in general, inverses. The compositions 0, o
and 5, o 0, will both be denoted ,; context will determine which order of operations
makes sense.

As the parameter f approaches zero, the correspondence between the models
becomes tighter. A statement involving f is said to hold eventually if it holds for
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Section 8A The Correspondence Between Designs and Sketches

all e less than some positive number 6. For example, Lemma 8a.1 says that if 9 is
a trace in the sketch E, then 0' = b (9) is eventually a wire in S,. If two entities
f and g depending on c are eventually equal, we say that f settles at g (or vice
versa). Proposition 8a.5 says that for any straight cut a in E, the congestion of
a settles at the congestion of a. This result is instrumental in achieving the goal
of Section 8B, namely, to derive the sketch routability theorem from the design
routability theorems of Section 6C.

From sketches to designs

The sheet S, is constructed as follows. Let B denote the bounding obstacle of
the sketch E = (, ), and let Z be the set of points inside B that lie at least f
units from the features in E, as measured in the wiring norm. Suppose e is less than
half the distance between the closest pair of disjoint features. We then define S,
to be Z. Why is this reasonable? The set Z is nonempty, and because the norm
1" - is polygonal, its boundary Fr Z consists of line segments. For each island C
other than B, the set Fr Z includes a polygon ,(C) surrounding C whose points
lie distance e from C. These polygons are disjoint, and form the inner fringes of S,.
Similarly, Fr Z contains a polygon be(B) whose points lie distance F from B; this
polygon surrounds all the others, and forms the outer fringe of S,. Each fringe b,(C)
of S, is considered to have the same width as the island C of E.

Next we define e(9) for a bridge 0 in E). Let A and B denote the fringes of
S, that correspond to the terminals of 0. Then A surrounds 0(0) and B surrounds
0(1). Let s be the point at which 0 leaves A, and let t be the point at which w
enters B. In symbols, we define s = sup0-'(A) and t = inf0-1(B). We have
0(s) E A and 0(t) E B because A and B are closed sets. The path 06 is just 0.:t.
If F is any set of bridges in E, we put r' = ( ) -y E r}. The design fl, is
simply 0' - { 0 : 0 E E) . Each path 9' in fl is assigned the same width as the
corresponding trace 0.

The paths 0 in 0, are not always wires, but they are wires if e is small enough.

*a Our first lemma implies that Q, is eventually a design, and that a realization of the
sketch E eventually corresponds to an embedding of f1.

Lemma 8a.1. Let (=, 0) be a sketch. If 3 is a bridge for E, then /3 is eventually
a link in S,. And if B and 0 are bridge-homotopic with respect to the features E,
then /3 and 9' are eventually link-homotopic.
Proof. Let X represent the set of points contained in the features --. For any

subset C of R 2, the notation I1C - XI[ denotes the distance between C and X: the
infimum of 11c - xli over all c E C and all x E X. We say a path a in R 2 flees
from - if the function t .- * 11a(t) - X11 is increasing. If /3 is any bridge for E, then
there are points s, t E I satisfying 0 < s < t < 1 such that /30:. and 31:t flee from E.
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Return to the Sketch Model Chapter 8

(Since 3 is a bridge, for sufficiently small s and sufficiently large t the paths 3o:.
and #1:t are straight.) Let s and t be chosen thus.

I claim that if < [lItr 1.t: - X11, then 3' is a link in S,. First of all, 3,t is a

path in S, by the choice of e. Second, the paths /O: and 091:t can intersect Bd S,
in at most one point, since they flee from -2. If P and Q are the terminals of 3, it

follows that 3 is a link from P' to Q'.
The argument carries over to homotopies nearly intact. Let H be a bridge

homotopy between 3 and 0. That means 3, = H( . , z) is a bridge for all z E I, and
H itself is piecewise linear. We find a parameter s > 0 such that (#3)O:. flees from -
for every x E I. First choose s small enough so that for every z, the path (/3z)o:a
has at most two segments. This is possible because H is piecewise linear. For each
point x E I choose s. > 0 so that (f3l)o.,, flees from E. Using the continuity of H
one can find a neighborhood I, of z in I such that (/3,)o:,. flees from E for each
point y E I. Because I is compact, finitely many of these intervals I cover I; let
s be the minimum of the corresponding values of a. By a symmetrical argument
there exists t < 1 such that (fi:)1-t flees from - for all x E I. If necessary, decrease
s or increase t so that a < t. The compact set C = H([s, t], I) does not intersect
any feature in E, so the quantity tIC - X11 is positive.

I show that if c is less than tIC - X11, then f3' and 0 are link-homotopic links
in S,. Because (IC - X11 < [lhm(3).:t - X1I for any x, the claim implies that (/3=)k
is a link in S,. Hence the map u, z --* (3)'(u) is a link homotopy provided it
is continuous. By the definition of (/3), it suffices to show that the functions
fz -* sup(3)-(P) and g: x '-4 inf(,3)-'(Q') are continuous. We consider only
the first. Because (,3)o:. flees from E, the set sup(3)-(P') has a unique member
u.. The graph of the function f: z i-4 u, is precisely the set H'(P6 ), which is closed
because H is continuous. A map into a compact Hausdorff space is continuous if
and only if its graph is closed. Therefore f is a continuous function. D

If the input 3 to Lemma 8a.1 is a trace, its output ft3 is a wire. Suppose 3 is a
trace for the features 2, and let P and Q be its terminals. Eventually 3' is a link
in S,. Because P and Q are pointlike, the polygons P and Q6 are convex inner
fringes of S,. Because 3 is simple, so is 03. Therefore 3 is eventually a wire in S,.

Corollary 8a.2. If (, ) is a sketch, then eventually E0 is a design on S,. If

(, ) is a realization of (, O), then eventually V6 is an embedding of W6.

Proof. For each trace 8 E e, eventually 0' is a wire in S,. Since e is finite,
eventually the set e6 contains only wires. That set is a design. Its wires are
disjoint, because they are subpaths of the disjoint traces in 0, and no two share
a terminal, because no two traces in E share a terminal. Now bring 40 into the
picture. For each trace 0 E E there exists a trace 0 E 4 that is bridge-homotopic to
0. Eventually V6 is a design, and by Lemma 8a.1, eventually 9' is link-homotopic
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to O) whenever 0 is bridge-homotopic to 0. When this occurs, Vb is an embedding
ofK .  0

From designs to sketches

Now we show how to convert wires in S, into traces for the features ". Let X

be the union of the features in '.. First define a piecewise linear map 0,: Bd S' -+ X

that sends each point p on a fringe 0 b to a point P, on the island C. Choose this

function so that for any two distinct points p and q on the fringe C', the straight

paths p o pl and q v, q1 touch neither X nor each other except at pl and q1. Now

define 0,(w) for a wire w in S, by

0W)= (W(O), It W(O)) * w * (W(i) C' W(i)1).

With this definition, we obtain counterparts to Lemma 8a.1 and Corollary 8a.2.

They imply that an embedding of the design 11, always corresponds to a realization
of the sketch E.

Lemma 8a.3. Let (, e) be a sketch. If'y is a piecewise linear link in a sheet
S,, then -9I is a bridge for 'E. If-y is link-homotopic to a link X, then 9fl is bridge-

homotopic to X1.

Proof. That -fl is a bridge is clear. Let F be a link homotopy between ' and X.
By Lemma 2c.7, we may assume that F is piecewise linear. Define a function
G:lx I -+ R 2 byG(.,x) = h(F(.,x)); then G(.,O) -- andG(.,1) = X1. I
claim that G is a bridge homotopy. First of all, G is continuous because 0(77) is a
continuous function of q. Second, G is piecewise linear because F and 0, are. Third,
for each x E I, the middle of G(., x) intersects no feature in .. Finally, the sets
F(O, I) and F(1, I) are subsets of fringes pb and Qb, where P and Q are terminals
of %I; hence G(O, I) and G(1, I) are subsets of P and Q, respectively. Thus G is a
bridge homotopy with respect to the features E. 03

If the input -y to Lemma 8a.3 is a wire whose terminals correspond to pointlike
features, then the output 9f is a trace. Let w be a wire in S, with terminals P

and Q', where P and Q are pointlike features of 2. Because w is piecewise linear,
so is wo; because w is simple and its endpoints lie on different fringes, WO is simple.
Furthermore 9y intersects the features of '" only at its terminal points P and Q.
Therefore 9fu is a trace for 2.
Correspondence of congestion

Next we show that corresponding cuts eventually have equal congestion. In
addition to Lemmas 8a.1 and 8a.3, we need one further fact. The following lemma
shows that , and h are "nearly" inverses, at least with regard to bridge homotopy
and entanglement.
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Lemma 8a.4. If a is a bridge in the sketch (E, 0), then eventually ab is bridge-
homotopic to a and tangle(a4, 0) = tangle(a, 6) for all traces 0 E e.

Proof. Put X = U _ , and let R be the union of X with the routing region. The
path a4 = o ,(a) has the form

Q4 = (a(s), C* a(s)) * 0,:t * ( a(t)).

Let f3 denote the path Qo:S * aa:t * ati, which is a reparameterization of a. For
sufficiently small e the paths ao:, and aj:1 are linear, and then /3 differs from ab

only in its first and last segments. One can construct a piecewise linear motion of
the plane, constant except near the endpoints of a, that takes P onto ac. In other
words, there is a piecewise linear map F: R x I - R such that (a) F( -, 0) = idR,
(b) F(X, I) = X, (c) F(. , t) is a homeomorphism of R - X with itself for each
t E I, and (d) F( , 1) o / = a4. The map s, t -' F(a(s), t) is a bridge homotopy
between 3 and a4, and consequently a and a4 are bridge-homotopic.

Now let 0 be any trace in E; we show that tangle(ah, 6) = tangle(/3, 0). The
lemma will follow, since # is just a reparameterization of a. Some route r/o for 6
makes only n = tangle(/8, 0) crossings with /. We find a route v71 for 0 that makes
only n crossings with a4. For t E I, define 'it = F( . , t)o 77; by property (a)
above, this definition is consistent with io. Properties (b) and (c) above imply
that 77-'(X) = {0, 1} for each t. And since F is piecewise linear, so is 77t, and
so is the homotopy G: s,t '-4 it(s) between rio and iii. Thus r'i is a bridge, and
G is a bridge homotopy. Therefore 'ir is a route for iro, and hence of 0. Finally,
because a4 = F( . , 1) o 6 (property (d)) and 171 = F( . , 1) o tio, and F(. , 1) is a
homeomorphism of R- X with itself, the number of crossings between ah and 171 (as
bridges) is equal to the number of crossings between # and 'io, namely n. Therefore
tangle(a4, 0) < n = tangle(,3,0). The opposite inequality is proved similarly. 03

For simplicity, our congestion result considers only straight cuts, since those are
the only cuts we really need.

Proposition 8a.5. If a is a straight cut of the sketch (, 0), then cong(a, S)
* settles at cong(a).

Proof. Assume c is small enough that Q, is a design on the sheet S,. We show that
the entanglement of a trace 0 with a is eventually equal to the entanglement of 0
with a6 . First, suppose tangle(a, 0) = m. Then 0 has a route 8 that makes only m
crossings with a. Hence for any f > 0, the path fl makes at most m crossings with
ab. By Lemma 8a.1, 03 is eventually link-homotopic to 0' . Therefore tangle(a6 , 0')
is eventually at most m.

Now we show the reverse inequality. Suppose tangle(a', 0) = n. Then there is aEl route w of 0' that makes exactly n crossings with a6 . By Lemma 8a.3, the paths wl
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and 04 are bridge-homotopic, whence wl is bridge-homotopic to 0 by Lemma 8a.4.
The endpoints of w do not lie on Im a6, or else these crossings could be removed.
Hence wo and (ab)l cross only where w and a6 do. Because wl is a route for 0, we

have tangle(a4,0) < n. Lemma 8a.4 now shows that tangle(a,0) _ n.
To prove the lemma, let e be small enough that tangle(cr, 0) = tangle(a", 0') for

every trace 0 in (. Then we have

cong(a) = E width(0) tangle (a, 8)

= > width(0) tangle(a, 0'b)
9e0

= cong(,

Thus cong(a) is eventually equal to cong(ab, fl,). E3
Proposition 8a.5 and Lemma 8a.1 let us carry over our first result from designs

to sketches: the invariance of congestion under homotopy of cuts.

Corollary 8a.6. Bridge-homotopic simple cuts have equal congestion.

Proof. Let a and 3 be bridge-homotopic alpha cuts in a sketch E = (2-, E). Ac-
cording to Lemma 8a.1, a' and 3" are eventually link-homotopic, whence by Propo-
sition 4b.3 they eventually have equal flow. The cuts ab and # are also simple, and
hence have congestion equal to their flow, by Proposition 4b.6. Finally, Proposi-
tion 8a.5 says that the congestion of a is the value at which cong(ab, 06 ) settles,
and similarly for ft. We conclude that these values are equal. 0

8B. Sketch Theorems

This section extends the correspondence between sketches and designs to include
safety and routability. Specifically, we show that a sketch is safe if and only if the
corresponding designs are safe; and a sketch is routable if and only if the corre-
sponding designs are 0-routable. In the process we identify certain critical cuts that
dominate the others, in the sense that if any cut in a sketch is unsafe and nonempty,
then one of the critical cuts in unsafe and nonempty. One product is a strong form
of the sketch routability theorem: a sketch is routable if and only if its nonempty
critical cuts are safe. Another result is the sketch routing theorem: every trace in a
routable sketch has an ideal realization that is no longer than any feasible realiza-
tion of that trace, and the ideal realizations of the traces in a sketch form a proper
realization of the whole sketch.
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Territories and capacities

Going from a sketch to a design, the islands expand into fringes while retaining
their assigned widths. It appears that a sketch on the brink of unroutability would

necessarily give rise to unroutable designs. Something must give, and what gives is
the wiring norm. Let E be a sketch with wiring norm 1" - 11, and let P be half the

width of the narrowest element of E. We measure extents and capacities in S, with

the norm 11 -I1 = I1* "1. With this definition, the territory of each element C of E

contains the extent of the corresponding detail C in S,. Conversely, every point in
the territory of C eventually lies in the extent of C. Together with Lemma 8a.1,
these facts allow us to relate the routability of E to the O-routability of f,.

,V, Lemma 8b.1. If the sketch E = ( is, )1 safe and 0' is a design, then 0' is
-safe. If E is routable, then 0' is eventually O-routable.

Proof. First we look at safety. Suppose that E is safe and that 06 is a design
on the sheet S,. The extent of each detail of O is contained within that of the

* corresponding element of (=, 0). Since the sketch (-, 0) is safe, none of its elements
have overlapping territories, except where the territories of wires overlap with the
territories of their terminals. Hence the same is true of O. Furthermore, the traces
in E are self-avoiding. If 0 is any trace in 0, then the territory of 0, together with

those of its terminals, does not separate any two features in E. Since the extent of
the corresponding details of E6 are smaller, we conclude that the wires of 06 are

self-avoiding also. Thus 0) is O-safe.
Now we look at routability. Corollary 8a.2 says that every realization of (-, 0)

eventually gives rise to an embedding of 0'. If E is routable, it has a safe embedding,
which eventually engenders a O-safe embedding of O. Thus 06 is eventually -

routable. D

The next lemma relates the capacities and safety of straight cuts. We say that

* a cut a in the sketch E is exposed if 11a'1[ eventually equals I[al - 2E.

Lemma 8b.2. Let a be a straight cut in the sketch (-, 0). If a is unsafe, then
a is eventually unsafe. If a is safe and exposed, then a is eventually safe.

Proof. By Proposition 8a.5, we may assume c is so small that the congestion of a6
0*,' has settled at the value cong(a), which we denote by c. If a is unsafe, then c exceeds

the capacity of a by some positive amount. Clearly the capacity of a6 converges
to that of a as f --+ 0, so eventually the congestion of a6 , which is also c, exceeds

cap(a'). Now suppose that a is safe. Then we must have cap(a) > 0, whence

Nail _ 2 p. For the other direction, if eventually ia1 hail l- 2f, then cap(a6 )
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eventually differs from cap(a) by

llc Il'- 111ail = (1lall - 2,) - 1all
= JA_ (( /p) lla ll - 2 f)

A -(2 - 2f) = 0.

Therefore the capacity of ab is eventually no less than that of a, and so a' is
eventually safe if a is safe. 0

Now we have enough machinery to prove one direction of the sketch routability
theorem.

Proposition 8b.3. A sketch that contains an unsafe, nonempty, straight cut
is unroutable.
Proof. Let a be a nonempty, unsafe, straight cut in the sketch (, 0). Then a, is
straight (by definition), eventually nonempty (by Proposition 8a.5), and eventually
unsafe (by Lemma 8b.2). In other words, for all f less than some positive CO, the
design f, contains a nonempty, unsafe, straight cut. According to Section 6C (see
the third line of Table 6c-1), no embedding of fl, is O-proper. By Lemma 8b.1,
therefore, the sketch (-E, 0) is unroutable. 0

Critical cuts

We would like to prove the converse of Proposition 8b.3: that the design fl, is
eventually O-safe if the sketch E is safe. This statement is true, but is not an easy
consequence of Lemma 8b.2. First of all, not every straight cut a in E is exposed.
Moreover, even if a' is eventually safe for each straight cut a, it need not happen
that eventually all such cuts become safe, since there are infinitely many straight
cuts in E. To overcome these problems we need a finite set of straight, exposed cuts
r such that the set ' = { r, -: I' } is eventually O-decisive (Definition 6d.1) for
the sheet S,.

Fortunately, such a cut set is at hand: we let F contain the exposed critical cuts
in the sketch E = (-, E). Proposition 6d.8 allows us to show that F is eventually
a O-decisive set of cuts in the sheet S,. Recall from Section IC that a critical cut
is a straight cut that begins at a feature endpoint and travels to the closest point
on a disjoint feature, as measured in the wiring norm, with ties broken using the
euclidean norm. (Actually, the ties may be broken arbitrarily.) The critical cuts for
a sketch depend only on the features and the wiring norm. Consequently the set Fr
is independent of the design 0' .

Proposition 8b.4. If r is the set of exposed critical cuts in the sketch E, then
F is eventually h-decisive.
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Proof. Let f be small enough that S, is a sheet, every path in I is a link in S,,
and every path y E r satisfies I-/,bl = - ]1-/i- 2c. Once this equation holds, it holds
for all smaller values of e, and hence if a cut X of E is critical but unexposed, then

I1X'Ij < lixil - 2e.
By Proposition 6d.8 and Corollary 6d.4, it suffices to show that rL spans the

sheet S,. For each feature P of E, let P be the set of points of distance f from P.

Then pb is a convex polygon, and the collection of such polygons over all features
P of E is an edging for S,. (See Definition 6d.7.) Let P' and Q be elements of this
edging. We must show that either

(1) r, contains a minimal path from P to Q6 that is a cut in S,, or

(2) there is a minimal path from P to Q' that is not a cut in S,.

We can assume that P and Q6 do not intersect, else case (2) would obtain.
In both cases the minimal path is derived from something like a critical cut. Let

X be a minimal path from P to Q. We may choose X so that if X is a cut, either
X or j is critical. Let X* be the subpath of X that runs from P' to Q'. Its length
is liP - Q11 - 2e which equals 1iP - Q1I, and hence X" is a minimal path from P6

to Q4. If X is not a cut, neither is X*, and case (2) holds. Assume therefore that
X is a critical cut. If X is not exposed, then j1x'j1 < jxIj - 2c and hence X1 # X*.
Consequently X" is not a cut, and again case (2) occurs. Assume therefore that X is
exposed. Then x E F. Also j1x' == llxil - 2e, which means X' = x*, which leads
to case (1). I=

Ideal realizations

Just as routable designs have ideal embeddings, routable sketches have ideal
realizations. If 0 is a trace in a routable sketch (E) O), a realization p of 0 is ideal
if once the design E0 becomes I-routable (Lemma 8b.1), the ideal embedding of
converges uniformly to p.

Proposition 8b.5. Let (-, 0) be a sketch. If the design E' is eventually -

routable, then every trace in e has a unique ideal realization. 13

Proposition 8b.5 is difficult, and I have not written out a formal proof. I discuss

the proof, however, in Section 8C. The only remaining step is the following.

Proposition 8b.6. If every trace in a sketch has an ideal realization, then
those realizations form a proper sketch.

Proof. Let E2 = (-, E) be a sketch, and for each trace 0 in 0, let 0' be the ideal
realization of 0. Denote by 9' the set {0' : 0 E E). We show that (,9') is a
proper realization of (--, E6). Three things must be shown:

(1) that no two islands in E have overlapping territories;

- 252 -

@4



Section 8B Sketch Theorems

(2) that no trace in 0' has a territory that intersects the territory of any other
trace in E', or the territory of any island in E except its terminals; and

(3) that each trace in e' is self-avoiding.

Claim (1) is easy. Whenever f1, is O-routable, no two fringes of S, have overlap-
ping extents in the norm 1i ], = MI] ]]. Hence if P and Q are any two islands

in E, and Pb and Qb are the corresponding fringes of S , we eventually have

lip - Qll ip, - Q111,
e (width(P) + width(Q))/2.

Since this inequality holds for arbitrarily small e, the distance between P and Q
is at least the mean of their widths. Therefore the territories of P and Q do not
overlap.

Claim (2) is a little harder, but only because it involves the convergence of ideal
embeddings. Let 0 be a trace in E and P an island of E other than the terminals
of 0. For c small enough that 0, is O-routable, let p, denote the ideal embedding
of the wire 0' E fl. Let 6 > 0 be arbitrary. Because p, converges to 0' uniformly
as f -- 0, eventually I]p,(t) - 0'(t)ll < 6 for all t E I. When f, is O-routable, the
extents of p, and P' do not overlap, so eventually

lIp -fm o'Il > 11P - I, p II- 6
= i"-mp l

.-(width(P) + width(O))/2 - 6.

Since this inequality holds for arbitrarily small 6 and c, it holds with 6 = F = 0.
Thus the distance from P to 0' is at least the mean of their widths, which implies
that their territories are disjoint. A similar argument shows that no two traces in
0' have overlapping territories.

Claim (3) says that the traces in 0' are self-avoiding. Suppose to the contrary
that 0' E 1 ' is not self-avoiding. Then the territories of 0' separates two islands P
and Q of E, so by Lemma 2c.2 there is a loop A within the territory of 0 that separates
one from the other. Because Im A is compact, there is some 6 > 0 such that every
point of Im A lies within width(0)/2-6 units of 1m 0'. In other words, for every s E I
there exists t E I such that 11A(s) - 0'(t)I < width(O)/2-6. Since p, --+ 0' uniformly

4 as c -. 0, eventually we have jlp,(t) - 0'(t)ll < 6/2 for all t E I. Then by the triangle
inequality, for each s there exists t such that IIA(s) - p,(t)ll < width(O)/2 - 6/2. If
c is small enough that (e/2p) width(O) < 6/2, then IIA(s) - p,(t)ll, < width(O)/2.
Now width(O) = width(p,), so this means every point of Im A lies within the extent
of p,. Therefore the extent of p, eventually separates P from Q, ( r P' from Qb.
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(Once f0, becomes 0-routable, the extent of p, cannot intersect either p or Q'.)
Therefore p, eventually fails to be self-avoiding, a contradiction. This observation
completes the proof. E3

The sketch routability and routing theorems

Now we put the pieces together.

Theorem 8b.7. (Sketch Routability Theorem) A sketch is rou table if and only
if its nonempty critical cuts are safe.

Proof. Since critical cuts are straight, Proposition 8b.3 takes care of the "only if"
direction. For the "if" direction, suppose E is a sketch whose nonempty critical
cuts are safe. By Proposition 8b.4, there is a finite set r of exposed cuts in E such
that 1' is eventually 0-decisive. By Proposition 8a.5, eventually -y is empty in Q,
whenever -y is empty. And by Lemma 8b.2, -f, is eventually safe in n, if -f is safe
in E, for each -y E r. Since r is finite, all the nonempty cuts in 1' are eventually
safe, and since r is eventually 0-decisive, this means the design fi, is eventually
0-routable. By Propositions 8b.5 and 8b.6, therefore, E has a proper realization.
Thus E is routable. 03

Theorem 8b.8. (Sketch Routing Theorem) The ideal realizations of the wires
in a safe sketch form a proper sketch. They have minimal euclidean arc length
among all feasible realizations of those wires.

Proof. The first statement is merely an elaboration of what we just showed in
Theorem 8b.7. Now let p be the ideal realization of a trace 0 in the safe sketch
(E, E), and let p, denote.the ideal embedding of 0b. Lemma 8b.1 shows that the
design corresponding to a proper realization of a sketch (E, O) is a proper embedding
of the design E' . So if 8 is a feasible realization of a trace 0 E E, then /3, = ,(#)
is a feasible embedding of 0. Now J#,J converges to 1#1 as - --+ 0, and by the design
routing theorem (6c.2), the arc length of fl is at least that of p,. If I1pd converged
likewise to 1pl, then we would have 1#/1 > (pJ as desired.

Actually, it suffices to find a lower bound on 1pJ that converges to 1Pl. Suppose
the joints of p are rl, ... , r,,, and let -t denote the polygonal approximation to p,
whose vertices lie at

p,(),p, (,.),...

We have I-v I -< IpI by the definition of arc length, and because p, converges uni-
formly to p, the arc length 1-yI converges to plI. Since 1I, >_ 1pt -> 17J, and
0,- [ i, we have 1/#1 - Ipl. Thus ideal realizations have minimal euclidean arc
length among all feasible realizations. 03

- 254 -



Section 8C Correctness of the Sketch Algorithms

8C. Correctness of the Sketch Algorithms

The time has come to reconsider the algorithms of Chapter 1. Sad to say, this thesis
does not prove those algorithms correct. It does, however, show how one could
rmake the connection between the sketch algorithms and the theorems of Chapters
6 and 7 concerning designs. In most cases what is needed is a careful analysis of the
design corresponding to a sketch, or more specifically, the way in which something
associated with that design tends to a limit as c -- 0. Three good examples come
to mind: the ideal embeddings of the wires, the mazes for those wires (discussed
below), and the elastic-chain equivalent of the design. These limiting processes are
very tedious to evaluate, and I have not worked them all out. I have little doubt,
however, that they can be worked out.

In this section I first argue that the rubber-band equivalent of a sketch, in
combination with the scanning methods of Algorithms T and R, correctly computes
the congestions of straight cuts (in Algorithm T) and the diagonal gates for traces (in
Algorithm R). Here I appeal to the results of Section 7C concerning elastic chains.
Assuming that the scanning procedures do their jobs, I then argue that Algorithm T
checks the safety and emptiness of every critical cut (which is clear), and that
Algorithm R produces an ideal realization of any routable input sketch. In discussing
Algorithm R I outline the reasons why every trace in a routable sketch has a unique
ideal realization, and thereby provide some justification for Proposition 8b.5.

The sketch algorithms are best understood not in terms of sketches, where our
mathematical understanding is poor, but rather in terms of the limiting behavior
of the corresponding designs. A good example is the rubber-band equivalent of a
sketch E = (E, 0). What the RBE of a sketch E computes, given a straight cut
a, is by definition the content of a: the sequence of rubber bands (pl, ... , p" ) of
traces in E that necessarily cross a. Say pi is the rubber band of 9i E Theta for
each i. We do not interpret this sequence in terms of necessary crossings of a by
traces in E; no such concept has been defined. Instead we interpret it as a sequence
(pi, ... , p) such that for all sufficiently small e, the content of a' in 0' is (O',

n0' ). We can then relate the eventual content of a to the congestion of a'
and thence to the congestion of a. Another example is the maze that Algorithm R
computes for a typical trace 0. We do not explain this maze in terms of necessary
crossings of diagonal cuts, but rather as the limit as f --+ 0 of the maze for the
ideal embedding of 0b, deleting gates derived from trivial crossings. We can then
argue that the ideal realization of 0 is a tight track through this maze, and hence
is computed by Algorithm R.

Rubber bands versus elastic chains

We relate the RBE of a sketch E to the plans of cuts and wires in the corre-
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sponding designs O9 by way of the elastic-chain equivalents of 0' . An ECE of a
design has a structure more abstract than its pure geometry: the segments of its
chains and fringes intersect in a certain fashion, overlapping segments are sorted
in a certain way, the segments of each chain are connected in a certain order and
labeled with the wire they came from. One can show that these properties of the
ECE settle, independent of which ECE one chooses for each value of f. The struc-
ture of the RBE is a reflection of the settled structure of the ECE, and the latter
can be recovered from the former.

The connection between rubber bands and elastic chains comes from the way
we construct them. Recall how one constructs the rubber band for a trace. Let
0 be a trace in the sketch E = (E, 0), and Let F be a triangulation of the routing
region of E by straight cuts. The images of the elements of r are called doorways.
The trace 0 passes through a certain sequence of doorways, which we "reduce" by
eliminating consecutive occurrences of the same doorway. The resulting sequence
Im 71, ... , Im 7, together with the terminals of 0, is a corridor for 0. The rubber
band for 0 the shortest path through this corridor. (We are assuming the correctness
of Algorithm W.) We can construct the elastic chain for 0b similarly. Let l be small
enough that O is a design on the sheet S, and r, is a set of disjoint cuts in S,.
Because F is a triangulation, rb is a pattern of straight cuts, and the path code
of 0 ' in F settles to (-y , ... , -y, ). If necessary, displace a couple of initial and
final segments of 0 so that 0 is free in r . (This change does not affect the rubber
band of 9.) Then by Lemma 7c.1, the elastic chain for 06 is eventually the shortest
canonical path in S, from 0b(0) to O(1) whose seam list in r, is (-,, ... , 7, ).

Clearly the elastic chain and the rubber band are very similar. In the limit,
the only difference is that the elastic chain is required to be canonical, whereas the
parameterization of a rubber band is unimportant. One can show that for suffi-
ciently small f, the elastic chain approaches the same sequence of feature endpoints
(within E) that the rubber band touches, and that it passes left or right of them
just as the rubber band does. In other words, the rubber band encodes the limiting
structure of the elastic chain. This structure is all one needs in order to compute se-
quences of nontrivial crossings among cuts and elastic chains. (The trivial crossings
may depend on which elastic chains one chooses, but the nontrivial crossings-the
crossings in the link plans-do not.)

Use of the rubber-band equivalent

As previously mentioned, the primary task of the rubber-band equivalent is the
computation of content. Given any straight cut a in the sketch E = (, ), it should
compute a sequence (01, ... , 6,,) of traces in 0 such that the content of a' in 0'
is eventually (0', .0.., 9 ). In the case of the condensed RBE, it should compute
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i=1 width(O) instead. The former task subsumes the latter, so we concentrate on
it alone. We take the case in which a is not a subpath of the elastic chain of any
trace in 0.

By Corollary 7c.6, it suffices for the RBE to .compute the settled sequence of
traces in the cut plan of a' in 0t, eliminating those corresponding to trivial crossings.
Recall that this cut plan is just the sequence of crossings of a by elastic chains in 0',
ordered by precedence. So we need to check two things: first, that it computes the
correct number of nontrivial crossings of c b by each elastic chain; and second, that
it sorts the crossings according to precedence.

First we examine the problem of identifying the nontrivial crossings of a'. The
following lemma gives us a handle on the problem.

Lemma 8c.1. Let a be a straight cut in the sketch E = (,9) and let p
be the elastic chain of a wire 9 E 19'. Eventually, a crossing (c, r) of a6 by p is
trivial if and only if there are points s E I and e E {0, 1} such that p,. is straight,

*lm p:e C Bd S,, and p(e) lies on a terminal of a. 0

In the light of Lemma 8c.1, we consider the relationship between the crossings of
a straight cut a, as computed by the RBE, and the trivial crossings of a6 by elastic
chains in e'. Say a = p c, q, and let r t 9 be a strand of the rubber band for some

* trace 0 in E. If p crosses FYN, there may eventually be a corresponding crossing
between a6 and the elastic chain of 96. Lemma 8c.1 tells us that such a crossing is
eventually trivial if and only if either (a) r E p and r c, is the first strand in its
rubber band, or (b) s E P and r > s is the last strand in its rubber band. With this
in mind, we can see that the RBE correctly reports the (eventual) crossings of a'

in each case.

(1) If 73- crosses the middle of p" and is not parallel to p-q, then the RBE reports
a crossing.

(2) If the middle of f' intersects an endpoint of T, then the RBE reports a
crossing provided that f" passes between p and q: it must leave p to the left
if q lies on its right, and vice versa.

(3) If fr-s shares one endpoint with V, then the RBE reports a crossing pro-
vided that Fs- passes between p and q as before. In particular, no crossing is
reported if the rubber band ends at the crossing point.

(4) If T-3 = pq-, then the RBE reports a crossing provided that Fs- leaves p and q
to opposite sides. In particular, f-3 must not be the first or last strand in its
rubber band.

The other aspect of the RBE is they way it sorts the set of nontrivial crossings
of the cut a'. When two crossings occur at different points along a6 , which one
precedes the other is obvious. When two crossings occur at the same point of a ,
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precedence is determined by which side of one chain the other chain approaches
from. (See the end of Section 7C.) If one studies the procedure for constructing
the RBE, one will see that the RBE defines precedence in the same way, but with
rubber bands in place of elastic chains. Which elastic chain segments overlap, and
which side of a chain another chain approaches from, depend only on the structures
of those elastic chains. Since the rubber bands faithfully represent those structures,
the RBE computes the right ordering within each cable for determining precedence.

Correctness of Algorithm T

Once we show that Algorithm T correctly computes the congestion of each
critical cut, its overall correctness follows immediately from the sketch routability
theorem (Theorem 8b.7). Let a be a critical cut in the sketch E = (-,, E). If a is a
route for a trace 0 E E, then a is the rubber band for 0. In this case Algorithm T Y
detects no cables crossing the middle of a (since rubber bands do not cross over),
and when querying the RBE for crossings at the endpoints of a, it also finds none
(for the same reason). Thus Algorithm T deduces, correctly, that the congestion
of a is zero. If a is not a route for any trace in (, then ao' is not a subpath of
the elastic chain of any wire in O. Then what Algorithm T gets is the limit as
c approaches 0 of sum of the widths of the wires in the content of a' . That sum
is just the flow across ac (see Lemma 7b.4). Since a' is simple, Proposition 4b.6
says its flow is equal to its congestion, and its congestion stabilizes at that of a, by
Proposition 8a.5. Therefore Algorithm T ends up with the congestion of a.

Mazes for ideal wires and traces

Next we move on to Algorithm R. Before explaining it, we must first show how
to derive mazes for ideal wires. Recall from Section 7D that one obtains a maze
in which an ideal wire w is tight whenever for each diagonal slope ±b one has a

pattern [ with the following properties.

(1) Every cuts in F has angle ±b.

(2) Every strut for w is a subpath of some cut in F.

(3) For every seam -y E F, the line containing -f separates the interiors of the
pieces of F that include Im -y.

Such a pattern is easy to find, at least for sufficiently small f, when w is the ideal
embedding of a wire 0 ' derived from a trace in a sketch E. Given the angle 6, let
,\ be a set of cuts that contains, for each diagonal cut a of E with d = ±b, exactly
one diagonal cut chosen from a and &. Note that A cuts the routing region of E
into triangles and trapezoidal strips. Assume f is small enough that for all A E A
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the path A' cut in S,, and put F A . Clearly A6 satisfies conditions (1) and (3);
an extension of Lemma 7d.1 shows that F also has property (2).

Now we consider the behavior of the ideal wire w as E approaches 0. Let 0 be
a trace in a sketch E = (E, G) whose corresponding designs G' are eventually [-
routable, and let w be .he ideal embedding of the wire 0 . Section 7D shows how to
derive from the pattern A6 and the elastic-chain equivalent of G' a b-tunnel for w.
It also shows, in Proposition 7d.6, that when these 6-tunnels are combined to formIa maze, that w is a tight track through that maze. If we compare this maze to the
maze to the maze constructed by Algorithm R for 0, we find very few differences.

(1) The b-tunnel for w is derived from a path plan of the elastic chain for w
in A6 and the cut plans of the cuts A' in the elastic-chain equivalent of 0 .

The corridor for 0 for the diagonal slope ±6 is derived in the same way from
the sequence of elements of r crossed over by the rubber band of 0 and the
sequences of rubber bands crossed over by the cuts in F.

(2) The b-tunnel for w accounts for the possibility that a crossing made by w in A6

may be trivial, and adjusts the gate endpoints accordingly. (See comments
v following equations (7-6) and (7-7).)

(3) A typical gate in the maze for w is positioned with respect to the endpoints
of a diagonal cut A' using the norm 11 [1,, while the corresponding gate in
the maze for 0 (if one exists) is positioned with respect to the endpoints of
A using the norm lh ii.

All three differences essentially vanish in the limit. Only the first one is inter-
esting; we dispose of the other two now. Difference (3) vanishes in the limit because

IJxik -I xJ for all points x and A6 
-+ A for all cuts A as c --+ 0. Difference (2)

arises because the crossings found by the RBE, as discussed previously, are the
nontrivial ones. The trivial crossings in the path plan for w in A' are occur only
at the beginning and end of the plan (Lemma 7b.3), and the gates corresponding
to those crossings intersect the terminals of w. (As c approaches 0, those terminals
shrink to points. Using these facts, one can check that the gates for w derived from
trivial crossings eventually cannot restrain w, and thus can be removed from the
maze for w without ill effect.

Ncx we examine difference (1) more closely. A typical gate -' in the 6-tunnel
for w is constructed from a crossing of a cut AinA by the elastic chain p for W.
This crossing appears in two sequences: the wire plan of p in A6 , and the cut plan
of A6 in the ECE of 0'. (We need to choose an ECE that contains p.) Its position
in the wire plan determines how many gates precede and follow Y in the 6-tunnel
for w, and its position in the cut plan determines which subpath of A6 the gate -Y
is to be; see equations (7-8) and (7-9) in Section 7D. Correspondingly, a typical
doorway -f in the 6-corridor for 0 is constructed from a crossing that appears in
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two plans: the sequence of that the rubber band of 9 makes with cuts in A, and
the sequence of crossings of rubber bands made by the diagonal cut A. Its position
in the first sequence determines its position in the corridor, and its position in the
second sequence determines where the doorway is situated on A; see equations (1-1)
and (1-2) in Section 1D.

The two situations are in almost precise correspondence, if trivial crossings in
the design model are ignored. In other words, I claim that the crossing sequences
reported by the rubber-band equivalent, both of rubber bands and of cuts, faithfully
represents the crossing sequences in the elastic-chain equivalent of the corresponding
design, when trivial crossings are removed. This claim is an extension of previous
statements about the role of the RBE. Together with the others, it implies that the
maze for 0 is the limit of the maze for w.

There is another way to compute the maze for a trace, one that does not rely
on the rubber-band equivalent. We noted in Section 7D that if gates from trivial
crossings could be ignored, then one could easily compute the 6-tunnel for the ideal

0 wire w from an embedding T of the design 0b that conforms with A6. This construc-
tion can be duplicated in the sketch model, as shown in Sections 9B and 9D. One
constructs the reduced intersection graph of A and the sketch F2, which represents
all the crossings of cuts in A with wires in the embedding T, and connects them in
the proper sequences. From these crossing sequences the limiting maze for a trace
6 E (3 can be constructed quite easily. This idea was mentioned in Section IE; it
was discovered so recently that I have not had time to treat it in detail.

Correctness of Algorithm R

I now briefly outline the rest of the argument for the correctness of Algorithm R.
The input to Algorithm R is a routable sketch E = 0~(). By Lemma 8b. 1,
the corresponding designs E)" are eventually I-routable, and hence for each trace
0 E (3 the corresponding wire 60 eventually has an ideal embedding w. This ideal
embedding is always a tight track in its maze. Any convergent se(, ence of these
ideal embeddings, as f approaches 0, must therefore converge to a path p through
the limiting maze, which we have argued is the maze (or rather, the set of corridors)

that Algorithm R constructs for 0. One can also show that p is a tight track through
this maze, and is a realization of 9. Two consequences follow: that p is an ideal
realization of 9, and that p can be reconstructed from the limiting maze as shown
in Section 7E. The merging process described in Section 7E is exactly the one that
Algorithm R performs. Hence Algorithm R constructs an ideal realization for each
trace. Because the tight track through a maze is unique, the ideal realization is also
unique. Thus the same argument also gives us a proof of Proposition 8b 5
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Chapter 9

Sketch Compaction

While the sketch routing problem is interesting in its own right, more interesting
from a practical standpoint is its application to layout optimization. In this chapter
I present a polynomial-time algorithm for the sketch compaction problem defined
in Section 1A. Most of the text of this chapter appeared previously in my master's
thesis [29], although some terminology has changed.

The importance of the sketch routing problem is limited by its assumptions,
namely that the layer assignment and topology of the wires be predetermined.
Most routing problems that arise in circuit design are multilevel problems with
unspecified topology. One situation in which the layer assignment and topology are
known, however, occurs when an existing layout is to be modified. A very common
task in layout editing is that of making space in a layout for new components,
or of compressing excess space from a layout. Mathematically the two tasks are
very similar. I consider here the latter task, which is called layovt compaction:
given a layout, move its components to minimize the area it occupies. The sketch
compaction problem is a specific formulation of the task of layout compaction, but
it generalizes many of the compaction problems that are known to be solvable in
polynomial time.

What follows is a brief discussion of compaction problems, the techniques com-
monly used to solve them, and the advantages of formulating the compaction prob-
lem in terms of sketches. A more formal introduction to the problem of sketch
compaction is given in Section 9A.

Layout compaction

An automated compaction procedure is an effective tool for cutting the produc-
tion costs of a VLSI circuit at low cost to the designer because the yield of fabricated
chips is strongly dependent on the total circuit area. An effective compaction sys-
tem also reduces design time by freeing the designer from continual concern over
design rules. If excess layout space can be removed automatically, the designer can
sketch a layout without making continual efforts to conserve area. For these reasons,
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compaction algorithms have gained widespread attention in the VLSI literature [16,
18, 24, 26, 58] and have been incorporated into many computer-aided circuit design
systems, including [10, 16, 25, 47, 54, 57]. In many of these systems the input is
symbolic, without explicit geometric content, and the function of the compactor
is to convert the symbolic representation into a geometric specification. My com-
paction algorithm is not of this type. Its input and output are equally abstract:
both are sketches.

Most compaction algorithms, including the one described here, compress a lay-
out in one dimension only. To reduce both dimensions, the layout is alternately
compacted horizontally and vertically until no further improvement can be found.
Compaction in two dimensions simultaneously is NP-complete (although some 2-D
compaction techniques may work well in practice [18]). Another common restriction
is that the compaction algorithm cannot change the topology of any routing layer.
In particular, its does not permit any component to jump over another component
on the same layer. Without this restriction, the compaction problem again becomes
NP-complete [261.

Constraint-based compaction

Many one-dimensional compaction systems [16, 25] use a constraint-based tech-
nique. To compact a layout horizontally, the program begins by assigning to each
layout component i a variable zi that represents the x-coordinate of the compo-
nent's leftmost point. The design rules of the fabrication process are then used to
derive constraints on the positions of the components. For example, if device i lies
to the left of device j, and such devices must remain at least 2 units apart in order
to function reliably, the compactor generates a constraint xi - xi _ 2 + wi, where
wi is the width of component i.

The design rules lead naturally to a set of constraints with nice properties. First
of all, the constraints are not especially difficult to compute [24]. Second, they are
sufficient to guarantee that the compacted layout is legal. Third, they are necessary
if components cannot jump over one another. Fourth, the constraints are simple
linear inequalities: they all can be represented in the form

xi - xi - aii,

where xi and xj are two of the variables assigned to layout components, and aii is
a constant.

Because of the simple form of the inequalities, they can be solved efficiently
by graph-theoretic techniques. One constructs an edge-weighted graph in which
the ith vertex represents the variable xi, and in which an edge of weight aij from
vertex i to vertex y represents the constraint xi - xi aij. An assignment to the
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variables xi that satisfies all the constraints is then determined by a longest-path
computation on the graph. The resulting values specify the optimal positions of
the components in the compacted layout. A good introduction to constraint-based
compaction may be found in [18]; common algorithms for computing longest paths
are discussed in [23]. (Most of the literature discusses the computation of shortest
paths, but finding longest paths is equivalent to finding shortest paths when positive
edge weights are replaced by negative, and vice versa.)

The computation of longest paths is especially efficient if the initial layout sat-
isfies the design rules [30]. One writes all the constraints in terms of displacements
of components from their original positions, rather than absolute coordinates. If d.
and di represent the horizontal displacements of modules i and j from their original
positions, and di - di _ aij is a constraint, then the legality of the initial layout
means that the inequality di - di _ aij holds when di = di = 0. In other words, the
constant ai, is nonpositive. Thus all the edges in the constraint graph have non-
positive weight, and so Dijkstra's algorithm may be used to compute the longest
paths. (Usually Dijkstra's algorithm is used to find shortest paths, in which case the
edge weights must be nonnegative, rather than nonpositive.) I use the same tech-
nique, writing constraints in terms of displacements, to speed up my compaction
algorithm.

Automatic jog introduction

In order to perform any sort of compaction, the components of the layout must
be differentiated into modules, which are fixed in size and shape, and wires, which
are flexible. Common procedures for generating design-rule constraints [16, 18, 24]
assume that wires are simply rectangular regions of variable height or width, and
otherwise identical to modules. A vertical wire, for example, would be assigned an
x-coordinate during horizontal compaction, and could only be moved rigidly from
side to side. But one would often like a previously straight wire to bend around an
obstacle during compaction, if the area of the circuit could thereby be reduced.

This problem is not easily overcome. Some systems [16, 57] attempt to solve it
y allowing the designer to specify jog points at which wires may bend. In effect,

the wires are broken into subwires at the jog points. Compaction then becomes
an interactive procedure in which the designer repeatedly examines the compacted
layout, adds more potential jog points, and retries the compaction operation. Other
systems [161 attempt to insert jogs automatically, using ad hoc techniques which are

not guaranteed to be effective. One technique that will work is to insert a jog point
wherever a wire could possibly bend. If the wires are restricted to run in a grid, the
number of such jog points can be made polynomial in the size of the input layout,
since no wire need bend at a point far from a layout component. This technique,
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however, consumes large amounts of time and memory, and it does not generalize
well to situations in which the grid is absent.

My approach to jog insertion involves replacing wires by routability constraints.
Algorithm C, the sketch compaction algorithm, treats wires not as objects to be
moved, but only as indicators of the topology of the layout. It constrains the
positions of the modules to ensure that there exist routings of the wires, having
the given topology, that form a proper sketch. It can express these routability
conditions as simple linear inequalities and solve them as usual. When the optimal
module placements have been established, the new wire paths are determined by a
single-layer router such as Algorithm R.

This approach to compaction requires knowledge of necessary and sufficient con-
ditions for routability. Ultimately these conditions are provided by the sketch rout-
ability theorem. The difficult part of Algorithm C is the construction of simple linear
inequalities that capture the routability conditions. Fortunately, this construction
is not especially model-dependent. In proving the correctness of Algorithm C, I
have taken care to highlight the specific features of the sketch model on which it
relies. Algorithm C is actually an implementation of a more abstract and general
compaction technique that works in any model with the properties described in
Section 9E.

Decomposition into planes

It remains to explain how sketch compaction, a single-layer problem, is germane
to the compaction of layouts with mul tiple layers. Assuming that wires on different
layers can be routed independently, then a multilayer compaction problem can be
reduced to a set of single-layer problems, one per layer. One first computes the
constraint systems for each layer independently. Since some modules extend into
two or more layers, one must merge the resulting constraint systems by choosing
the most restrictive constraint between every pair of modules. One then solves the
merged system normally to place the modules, and routes the wires on each layer

* independently.
This procedure could generate illegal layouts if there were design rule constraints

between wires on different layers. Fortunately, there are no problematic constraints
in the most common VLSI technologies. In a standard nMOS process with one layer
of metal, for example, the polysilicon and diffusion layers can be considered as one

.*a layer, or plane [471, for routing purposes, and metal the other plane. If transistors
are considered to be modules, then the wiring in each plane contains no crossovers.
Furthermore, wires on the two planes interact only at contact cuts, which are also
represented as modules.
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9A. Problem Statement

One definition of the sketch compaction problem was given in Section 1A. The input
is a routable sketch with islands grouped into modules; each module is allowed to
move horizontally as a unit. As modules move, traces must move as well in order to
remain connected to their terminals. A sketch is reachable if it can be obtained from
the input sketch by a continuous, piecewise linear motion that maintains routability.
The sketch compaction problem is to find a proper, reachable sketch of minimum
width. We will assume that two of the islands of the sketch are vertical lines, called
walls, between which the other islands are to be squeezed. The width of the sketch
is the euclidean distance between the two walls.

This definition is pleasantly simple and provides the right intuitions about sketch
compaction, but we shall work from a second definition that is more tractable
mathematically. The second definition is stated in terms of the configuration space
of the sketch. One can prove that the two definitions are equivalent, though I will
only prove one direction of the equivalence here.

Configuration space

The input sketch, call it S, is modular: its islands are grouped into modules,
collections of features whose relative positions are fixed. The compactor is allowed
to choose a horizontal displacement for each module. Such a vector of displacements
is called a configuration of S. The configuration d = (dj, ... , d,) corresponds to
a sketch S(d) in which module i has been shifted right by a distance di (or left
by a distance -di). Thus a configuration d determines how the features of S(d)
are to be placed; we shall consider the traces of S(d) shortly. If the sketch S
has n modules, then the set of all its configurations is the vector space R", and the
origin 0 of this vector space corresponds to the original sketch. Convex combinations
of configurations make sense: if c and d are configurations for S, then for each point
t E [0, 1] the vector (1 - t)c + td is a configuration partway between c and d.

Using configurations, we can describe how points on modules move during com-
paction. If p is a point in S, by which I mean that p lies on some feature of S,
its x and y coordinates will be denoted xP and yp, respectively. The module in
which p lies will be written y(p), so the horizontal position of p in the configuration
d is xp + d,(,). The notation p(d) stands for p shifted by d, that is, the point
(x, + du(p),yp). We also let Apq(d) be difference in x-coordinates between q(d)
and p(d). namely

Apq(d) = (xq + d.(q)) - (xp + d,(p)).

To disallow the possibility of modules crossing over during compaction, we re-
strict attention to a subset of all configurations. Suppose p and q are points in S"
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having the same y-coordinate. If q lies to the right of p, then we only wish to con-
sider configurations d in which q(d) lies to the right of p(d). So we let C(S) C Rft
be the set of configurations d such that for all points p and q of S with p. = qy and
p, < q,, we have Apq(d) > 0. We call C(S) the configuration space of the sketch S.
The configuration space of S is convex, because it is the intersection of convex sets
of the form

{d E R' : d,(q) - d,(p) > Xp - Xq p,q E S.

Only finitely many such constraints are needed to define configuration space: take
the strongest one for each pair of modules. Hence C(S) is open in R4.

Having defined the features of the sketch S(d) as displaced copies of the features
of S, we now define the traces of S(d). The definition is somewhat arbitrary. We
choose a continuous deformation of the plane, parameterized by the configuration d,
which moves each point horizontally and carries the features of S onto those of S(d).
We apply this deformation to the traces of S to obtain the traces of S(d). More
formally, if h: R 2 --+ R2 is a piecewise linear (PL) homeomorphism that is linear on
each feature of a sketch S, let h o S denote the sketch obtained by replacing each
feature P of S by h(P) and replacing each trace 0 of S by h o 0. We choose any
map H: R 2 x C(S) - R2 with the properties of the following lemma, and put S(d)
equal to H( , d) o S. The islands and traces of S(d) are assigned the same widths
as the corresponding elements of S.

V Lemma 9a.1. Every modular sketch S admits a PL map H: R2 x C(S) R 2

such that for every d E C(S) the map H(., d) is a homeomorphism h: R 2 R'
that carries each feature point p of S onto p(d), factors as h(x, y) = (hy(x), y), and
equals idR2 if d = 0.
Outline of proof. Triangulate the routing region of S with cuts in such a way
that each feature endpoint has two horizontal elements (features or cuts) incident
upon it. For d E C(S), the map h = H(. ,d) will take each triangle Apqr in this
triangulation to the triangle bounded by p(d), q(d), and r(d), and will map the
inside of the first triangle linearly onto the second. D

0The choice of the map H does not affect the topology of S(d). Suppose both F
and G both have the properties given in Lemma 9a.1, let 8 be a trace of S, and let
d E C(S) be a configuration. Then the trace G(., d) o 0 is a route for F(., d) o 0:
one homotopy between them is (s, t) '-4 ft(s) where

Ot = F( .,d) o F( .,td) - ' o G(. ,td) o0.

Problem statement

Given a routable sketch S, one would ideally like to find a configuration d E
C(.Q) such that S(d) is routable, and can be routed in minimal width. But this
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problem is almost certainly NP-complete. The reason is that the routability con-
ditions may not define a convex subset of configuration space, and hence the set
of acceptable configurations { d E C(S) : S(d) is routable I can be very hard to
search. For example, consider the sketch in Figure 9a-1. The set of acceptable
configurations falls into two components: those in which the upper module lies en-
tirely to the right of the lower module, and those in which the opposite is true.
Intermediate configurations correspond to unroutable sketches, and thus the set of
acceptable configurations is not convex. In most optimization problems, including
compaction, one only expects to search a convex subset of the acceptable configu-
rations in order to achieve a polynomial-time algorithm. Algorithm C searches the
largest such region that contains the initial configuration, and thus finds the best
configuration available to any algorithm of its type.

Figure 9a-1. How traces can prevent mod-
ules from sliding past one another. If the

J upper module is allowed to move to the left
of the lower one, the set of acceptable con-

f~r~j~)figurations is not convex.

The new definition of the sketch compaction problem, and the one that we
prove Algorithm C to satisfy, is the following. Given a routable sketch S, find a
sketch S(c) that has minimum width over all configurations c in the component of
{ d E C(S) : S(d) is routable ) that contains 0, and output a proper realization
of S(c). By redefining sketch compaction, we have not made it easier; if anything,
we have made it harder. Proposition 9a.2 implies that the output of Algorithm C
is at least as good as the output of any algorithm that solves sketch compaction as
originally defined.

Proposition 9a.2. If T is any sketch reachable from a sketch S, then T is
a realization of some sketch S(d) where d lies in the component of { C E C(S)
S(c) is routable } that contains 0.

, Proof. Let T be reachable from S through a family { T(t) : t E I } of routable
sketches, where S = T(O) and T = T(1). The definition of reachability requires
that the deformation t -4 T(t) be continuous and piecewise linear, that it move
each module as a unit, and that no module move vertically. Several consequences
follow. Each sketch T(t) has its modules in the same position as S(f(t)) for some
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configuration f(t) E C(S), and the function f: I -- C(S) is continuous and piecewise
linear. If for t E I the trace in T(t) corresponding to a given trace 0 in S is 0t, then
the map (s, t) " 0t(s) is also piecewise linear.

We show that for x E [0, 1], the sketch S(f(x)) is a realization of T(x), and there-
fore routable. The conclusion will then hold with d = f(1): the path f runs from 0
to d in C(S), and its image is a connected subset of { c E C(S) : S(c) is routable }.

Given x E [0, 11, we find a continuous, piecewise linear deformation of S(f(x))
into T(x) that fixes their features. Let H: R 2 x C(S) --+ R2 be the map that defines
the sketches S(c) for c E C(S). The desired homotopy is

t i-- [H(.,f(x)) o H(.,f(tx))-'] oT(tx).

At t = 0 it equals H(. ,f (x))oT(0), which is S(f(x)), and at t = 1 it becomes T(x).
Moreover, the homotopy is the composition of piecewise linear maps, and hence is
piecewise linear. To say the same thing another way: Let 0 be a trace in S, and for
t E I let Ot be the corresponding trace in T(t). A bridge homotopy between O and
its counterpart H(. ,f(x)) o 0 in S(f(x)) is (s, t) '-- lt(a) where

/3, = H(. , f(x)) o H(. ,f(tz))-' o0Ot. E3

9B. Computing Flows During Compaction

This section describes a procedure used to facilitate the computation of routability
conditions for a sketch. Of course, the routability conditions are based upon the
flows and capacities of cuts. (In this chapter I use flow as a synonym for congestion.
If a is a cut, I write flow(a) in place of cong(a).) Capacities are purely geometric
quantities, and can be computed from endpoint locations in constant time. In addi-
tion, they vary in a regular way with the movement of features during compaction.
Flows, on the other hand, are topological quantities, and are relatively difficult to
compute. Moreover, they depend in -omplex ways on the positions of features.
Thus to compute flows, we require a data structure that captures the topology of
the sketch and that is invariant under compaction. I begin by presenting such a
structure. The proofs that justify this construction may be found in Section 9D.

Intersection graphs

The data structure we use is called the adjacency graph of the sketch. Its
construction is straightforward, and is illustrated by Figure 9b-1. Given the input
sketch S, first choose a finite set IF of horizontal cuts, called gates, such that

-268-

La-



Section 9B Computing Flows During Compaction

(1) each island except the right wall contains the left endpoint of some gate, and

(2) each island except the left wall contains the right endpoint of some gate.

We call F a partition of .5. The gates in r chop the routing region of S into simply
connected pieces, each gate bordering on two pieces. (The routing region of S is the
set of points between the two walls that lie on no feature of S.) With the addition

of the gates in F, the sketch S forms a planar multigraph called the intersection
graph of r and S. Its nodes are disjoint regions of the plane: the islands of S and
the intervals of overlap between traces and gates where a trace crosses over a gate.
Its arcs are the portions of gates and traces that connect the islands and intervals
of overlap. [

After constructing the graph of intersections between gates and traces, the next
step is to reduce this graph, removing unnecessary crossings. In effect, one routes
the traces of S so that they cross the gates in r as seldom as possible. Fortunately
one need not construct the new traces; one need only remember crossings between
traces and gates and the directions of those crossings. Wherever two nodes in the
intersection graph are adjacent via both a gate and a trace, one removes whichever
of those nodes represents a gate/trace crossing. (None, one, or two nodes will be
removed.) To eliminate a node, one simply connects the incoming gate segments,
replacing them by a single arc, and connects the incoming trace segments, replacing
them by a single arc. After each removal the graph remains planar; one can imagine
rerouting the affected trace to eliminate the unwanted crossings, without causing it
to cross any other gates or traces. One repeats the operation of removing crossings
until it can no longer be applied.

The graph that remains is called the reduced intersection graph of F and S. We
mentioned it in Section 1E as a way of computing the content of the cuts in F. (In
that application r contained all the diagonal cuts of a particular diagonal slope.)
Each cut in F corresponds to a path in the reduced intersection graph, and the
nodes internal to that path represent crossings with traces. If one replaces each
such node by the corresponding trace, one obtains the content of the cut. I explain
this fact further in Section 9D.

Adjacency graphs

The adjacency graph, which is actually a multigraph, is the planar dual of the
reduced intersection graph. Since the direction of each crossing is known, one has
enough information about the embedding of the intersection graph to construct its
dual graph, call it G. A node of G corresponds to a face N of the intersection graph,
a region of the plane. Let a be a simple path beginning at a feature point on the
frontier of N. We say N borders on z in the direction of ct if, among all the regions
into which F partitions the routing region, N lies in the first one entered by a. (If
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a~ lies entirely within a gate, we pretend that it enters the region directly above the 9

gate.) If -y is a gate, we say that N borders -f if N has an arc representing adjacency
across -t. We note for each edge of the G which gate or trace it crosses. We also
build for each island P a data structure that lets us answer, in logarithmic time, P
queries of the form: Which nodes of G border on the point p E P in the direction
of the straight cut p D, q? There are at most two such nodes.

Figure 9b-1. The adjacency graph of a
0 -0 sketch. Dashed lines are gates, and circles

00 are nodes of the adjacency graph. Wherever
._... .... .. 0 00

0Q 0 .. .. .. two such nodes are adjacent across a gate or
0 ........ trace, there is a gate arc or trace arc, respec-
0 0 tively, in the adjacency graph. These arcs

... . 0 0.... are omiitted for clarity. Adjacency across

0 0 00 0 0. features is not represented in the adjacency

3 ........ graph.

0

A key property of the adjacency graph is its invariance under horizontal com-
paction. During compaction, gates can only slide back and forth, and traces and
features never cross over one another. Hence for any configuration d E C(S), the
adjacency graphs of S and S(d) are isomorphic. (The isomorphism preserves all
relevant information up to change of configuration. For instance, it carries an arc
representing adjacency across a gate p c,- q to an arc representing adjacency across
the gate p(d) D- q(d). See Lemma 9d.1.)

Constructing the adjacency graph of a sketch is not difficult. Let S = (F, W)
be the input sketch. One must first choose a partition of S. One can do so very
quickly by scanning; in any case, the cuts in the partition should be sorted by y-
coordinate. One can then construct the graph of intersections between gates and
traces by any natural method. Since every trace segment could cross every gate,
this process might require 0(IFI IWI) time and space, but will probably need much
less. (Recall that IDI denotes the size of the data structure D. Thus JWI is not the
number of traces, but rather the number of line segments that compose them.)

The remaining tasks-reducing the graph and taking its dual-also require at
most O(IFI IWI) time and space. I recommend the following event-driven method

* for reducing the intersection graph. First scan over the entire graph to identify the
nodes to be removed, and place these in a queue. Then repeatedly take a node from
the queue, delete it, check whether any of its neighbors have become removable
due to the newly created arcs, and if so, add them to the queue. The checking
can be performed in constant time because nodes that represents crossings have
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only four incident arcs. Hence each arc of the intersection graph is examined only a

constant number of times before the queue becomes empty. Building the dual graph

is straightforward; one simply walks around the faces of the original graph, creating

dual nodes and arcs as necessary. The time and space taken by this construction

are both proportional to the size of the dual graph.

Searching the adjacency graph

The purpose of the gates is to relate cuts in the sketch to the sketch topology.

Though we work nearly always with straight cuts, I explain the application of the

adjacency graph to a somewhat wider class of cuts. If a cut makes no crossings with

gates that are removable by a bridge homotopy, then we can use the sequence of

gates crossed by the cut, its gate list, to search through the adjacency graph and

compute its flow. Let r be a partition of S, and let/ #be a bridge in S. We say 3

is direct if
* it never intersects the middle of a gate without crossing over,

* it intersects each gate at most once, and

0 no trace terminal intersects both 83 and a gate crossed by /3.

Every straight cut that is not a gate is direct.

Paths in the adjacency graph, too, correspond to sequences of gate crossings. To

see how, notice that there are two kinds of arcs in the adjacency graph: trace arcs,

which represent adjacency across a trace, and gate arcs, which represent adjacency

across a gate. A path through the adjacency graph thus crosses a sequence of

traces, one for each trace arc in , and a sequence of gates, one for each gate arc

in . The sequence of gates that C crosses is the gate list of . We assign each trace

arc a length equal to the width of the corresponding trace; gate arcs have length 0.

Then every path in the adjacency graph has a nonnegative length. It turns out that

the flow across a cut with gate list is directly related to the lengths of paths in

the adjacency graph with gate list .

Proposition 9d.4. The flow across a direct cut a in the sketch S is the length

of the shortest path in the adjacency graph of S that

(1) begins at a node bordering on a(O) in the direction of a,

(2) ends at a node bordering on a(1) in the direction of &, and

(3) has gate list equal to that of a. 0

It also turns out that the shortest path with a given gate list may be found by

a greedy algorithm: first take the shortest path to the first gate, cross it, find the

shortest path from there to the second gate, and so on. Algorithm F computes the

flow across a straight cut using this greedy method. It repeatedly searches through

the skeleton of the adjacency graph G. the subgraph consisting of the nodes and
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trace arcs of G. Because the gates partition the routing region into simply connected
pieces, the skeleton of G is a forest T. The input to Algorithm F is the gate list of
a direct cut. Algorithm F also works if the input cut is a gate, provided that its
gate list is considered to be empty. See Proposition 9d.5 for a correctness proof.

Algorithm F. (Computes the flow across a straight cut.)
Input: a direct cut a with gate list ('1, -.. , 7, ); the adjacency graph G with

skeleton T.
Output: the flow across a.
Local variables: integers i and t; nodes u, v, x, and y.

1. return min{ DIST(x, y) : x borders on a(O) in the direction of a,
and y borders on a(1) in the direction of a }.

2. function DIST(x, y);
3. t - 0; u -- x;
4. for -- 1 to n do
5. v - a node bordering 7i that is closest to u in T;
6. t -t + the distance from u to v in T;
7. u .- the node adjacent to v across the gate -'i;
8. return t + the distance from u to y in T.

Data structures for Algorithm F

The most time-consuming steps of Algorithm F involve searching through the
skeleton T of the adjacency graph. If simplicity is desired, one may implement
tines 5. 6, and 8 of Algorithm F using Dijkstra's shortest path algorithm. This
approach may work well in practice, but its worst-case behavior is poor; it could
require fQ(n ITI) time on a gate sequence of length n. This section shows how the
adjacency graph G may be preprocessed so that Algorithm F takes O(log2 IG!)
time per iteration. The preprocessing requires O(ITI log2 IGI) time and creates data
stru tures that occupy O(1TJ log ITI) space. One could speed up Algorithm F even
furt her by precomputing the distance between every pair of nodes in T, but only at
the cost of fl(IT12 ) space.

We speed up the searches by taking advantage of the fact that T is a forest.
. F,,r (ortivenience we may assume that T is a tree, since each search uses only one

.. niptnent of T. The first task is to preprocess T so that one can quickly determine
!he ,distan(e between any pair of its nodes, thereby speeding up lines 6 and 9 in
\ ,zt,r t hni I-" le second task is to preprocess T so that one can compute efficiently

r ",io.set riode in a connected subset of T to a given node. This ability is sufficient
, inplement line 5 of Algorithm F, because in each component of T, the set of

ri-des t,,,rdering a gate is connected.
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wid .k he heir valu"i at the next iteration. The path between ts1 and v'i is a
-u hpat h 4f the path rt weeri tuo and ,,), -w) zi in no higher than z0 . Suppose they were
'h tai ne heiht T hen L( 4( ZO. ZIWould be a higher node separating z, from zo.

I h ~ *,i~ iw -4)nI the path betwerti uO and t,(%, contradicting the definitionI
a I hert-ftre z I% %tri( t Iv lower than z0). We conclude that Algorithm V runs in

IU I te.* .t ins [a* h iteraiIl requires (log V~ltime due to the membership

Henlu r A Uporit hri \ hrn-thes in ()(log IGI log ITI) time.

!W. Thd- C'ompaction AlgorithmI
HAit 4. 010 .' ir s' !(I urflitine for cryfiptit ing flow, we now develop an algo-
*'kU III t 4) - heII t ff ket, h -' m a tion problem

Potential rijts

I "tf Oaxi' fot il itiiterlving Ithei compaction algorithm is that of a potential cut.
Ie ' .tzt' 4~ Ge frat 'irmsin the original sketch .and let ' be acontinuous, piecewise

'-II 'r' t nhat irhiies,fo~r each(-onfiguration d in C(S). a line segment between
't~ lat'ire Itd, and QId in the sketch 8(d) The function 0' in a&potential cut if

'he p. poll loi I~f v~id p relative to P(d) and Q(d) depends only on the displacement
,.rrwFn i 'd, an iiQdL, namely -1pq(d) = ,, - d,4p) (iitroetching the notation
lit htk 'v It 1i t her words, v,' insst satisfy the following condition.

P~ljrjjiA , it propert , If two (unfigurations d and d' satisfy Apq(d) = 1~pQ(d'),

'wi t. IS 1%Oiql to 'tdI shifted to the right by dM(P) - db,(p) units.

Thfe capacity of a potential cut O in the configuration d, denoted cap(t,t(d)). is

tetfinied as iNN minus the average of the widths of the islands that contain the
c-itipoinitm of lot d) This definition agee with the usual one when O(d) Is a cut. The
4rItfiguratiori c protects a potential cut 0' unless 0(c) is an unsafe, nonempty cut.
I he significance of these definitions lies in a reformulation of the sketch routability
h#'oretn in terms of potential cuts.

Definition 9c.1. Let S be a sketch, and let C E C(S) be a vector in its
rorih-guration space. For every endpoint p of a feature in F, and for every other
feature Q in S, let kqpc denote the linear path from p(c) to the closest point
on Q(c), measured in the wiring norm with tiebreaking in the euclidean norm.

f~he is)' a potential cut for S, which we call critical.

Theorem 9c.2. Let c be a configuration of a rou table modular sketch S. The
sketch S(c) is rou table if and only if c protects every critical potential cut of S.

Theorem 9-.2 follows directly from Theorem 8b.7.
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Algorithm overview

* Algorithm C works by finding a subset of configuration space, determined by
W" simple linear inequalities, whose configurations protect every critical potential cut.

The subspace searched is chosen so as to include the initial configuration.
The central problem is to find a simple linear inequality that ensures that a

potential cut, say ', is protected. We may assume that ?k connects features in
,different modules, for otherwise k, cannot generate a useful constraint. So ;'(d) is not

pty any configuration d, and it is enough to ensure that 4'(d) is safe whenever
it is a cut. One would like to use the routability condition cap(4'(d)) >_ flow(4,(d))
as a constraint on the configuration d, but for most potential cuts ip, this constraint
is not a simple linear inequality. The difficulty lies not with the capacity of 4'(d),
which is determined solely by the geometry of S(d), and depends in a simple way
,n the displacements d,. Rather, the quantity flow(V,(d)) is hard to characterize,

because it depends on the relation of the line segment 0(d) to the topology of the
sketch S(d).

The solution is to find a specific configuration c such that whenever the potential
(ut Id) is unsafe, its flow is equal to flow(V'(c)). The constraint cap(V'(d)) >
flowr(v(c)) is then sufficient to protect 4. Moreover, when this constraint is written
in terms of the variables d,, it becomes a disjunction of two simple linear inequalities,
.because the right hand side is constant. Because wc care only about configurations
Fachable from 0, one of the two inequalities can be discarded. To find c, the
algorithm looks for a configuration that minimizes the capacity of 4', subject to the
conmdition that all critical cuts of smaller vertical span are protected. These shorter
cuts force the other features to the side of 4' on which they must lie if 4 is ever to
become unsafe. If, in this way, the algorithm finds a configuration c that does not
protect w, then the routability condition for V'(c) is remembered. Otherwise, the

.potential cut ip is ignored.

Description of the compaction algorithm

Since critical cuts move in nontrivial ways during compaction, Algorithm C
considers two more types of potential cuts as well. For each pair (p,q) of feature
endpoints, we consider the potential cut Op defined by Opq(d) = p(d) t, q(d). We
also consider a potential cut Op. for every horizontal cut p > q incident on a feature
endpoint. We throw away a potential cut Op. or XpQ, however, if p lies in the same
island as q or Q, because such cuts cannot generate any useful constraints.

Algorithm C processes the potential cuts in a particular order. First come
the horizontal potential cuts; these generate the constraints that prevent features

from crossing over one another. Next come the potential cuts Okp. between feature
endpoints, in order of increasing height. The height of Opq is the quantity lY, - YpI.
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Section 9C The Compaction Algorithm

Finally the algorithm considers the critical cuts xpQ, also in order of increasing
height. The height of XpQ is determined as follows. For d E C(S), whether the
endpoint XpQ(d)(1) has y-coordinate greater than, equal to, or less than that of
XpQ(d)(O) is independent of d. We call XpQ "upward", "downward", or "horizontal"
accordingly. The height of XpQ is defined as lyq - ypl, where q is

(1) the point on Q with greatest y-coordinate, if Xp is upward;

(2) the point on Q with least y-coordinate, if XpQ is downward;

(3) the point XpQ(d)(1), for any d, if XpQ is horizontal.

This definition ensures that whenever a path of the form XQ(d) is a subpath of
XpQ(d), that either X,Q(d) = -Oq(d) for some feature endpoints r and q, or else the
height of pQ exceeds that of X'Q.

Algorithm C maintains a system I of simple linear inequalities among the dis-
placements di, represented as an edge-weighted graph over the modules. The result
of processing a potential cut i0 is a simple linear inequality which, when added to I,
ensures that all configurations satisfying the constraints in I protect i/,. Initially I
is empty. After Algorithm C processes all the potential cuts, the constraint system
I is complete, and the algorithm solves it using a longest-path algorithm. The re-
sulting configuration is used to build an output sketch, which is then ruted using
Algorithm R (thus minimizing trace lengths).

To process a potential cut vk between the features P and Q, Algorithm C ex-
amines how ;b varies with the relative positions of P and Q. By the definition of
potential cut, the length IIt(d)JI of ik is some function I of d,(Q) - d(p). And for all
potential cuts we use, this function I is convex (see Lemma 9f.2). Let A denote a
point at which 1 takes on its minimum value. By the symmetry between P and Q,
we may assume 0 > A. Algorithm C computes the constraint for tP thus. First
it solves the current constraint system I together with the additional constraint
d,(Q) - d,(p) > A, fixing d,,(p) and minimizing d#(Q). Call the resulting configura-
tion c. If c protects i, then the algorithm does nothing further with 1k. Otherwise
it computes the largest value A+ such that I(A+) = flow(k(c)), and adds to I the
constraint

d (Q) - d +(p) . (9-1)

We call inequality (9-1) the constraint derived from 0b in configuration c. The
complexity of computing the quantities A and A+ depends only upon the wiring
norm, and so I treat it as constant.

If 0 is horizontal, constraint solving is unnecessary because the flow across
is independent of configuration. In this case Algorithm C simply adds to I the
constraint derived from 0' in the configuration 0.

The compaction algorithm is summarized below. It assumes that the left and
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Algorithm C. (Compacts a sketch horizontally.)
Input: a sketch S = (F, W) with n modules specified.
Output: a proper, compacted sketch.
Local variables: the points p and q, a configuration c, the constraint graph I ,,ver

variables d, (I < i < n), coordinate value A.
Subroutines: Algorithm F is used to compute flows in lines 2 and 4, lihjkstra',

algorithm is used in lines 7 and 10; Algorithm R is used in line II
1. Preprocess S as described in Section 9B;
2. Let I be the set of constraints derived from the horizontal ( uts iin the initial

configuration 0;
3. foreach other potential cut u, between features I' and Q, in order, do
4. ifu(P) # (Q) then
5. Find A such that II,(d)JI is minimal when ApQ(d) = A.
6. if A . 0 then exchange P and Q and negate A.
7. Find a configuration c that minimizes r,, ) ',. 1 while Oev-iiK the

(onstraints I U {Apoj(d) _> A).
8. if w(c) is a cut in S(c) then
9. if flow(v'(c)) > cap(q,(c))

then add to / the constraint derived from v, in the. unfiguratan c,
10. Find a (onfiguration c satisfying I that minimizes C, cl.
11. Route the sketch S(c) and output the result

right walls of the sketch compose modules ) and ?i. respef tively

The idea behind the algorithm

Why does Algorithm C work' fhe correctness of Algorithm ( rests on two fat t%
about the configuration c found at line 7 If c protects the potential cut qv, then %(,
do all configurations that satisfy the constraints already generated And if c does
not protect i', then any other configuration d that satisfies the previously generated
constraints but fails to protect , ;asigns 4, the same flow as c does. We give these
statements formal proof in Section 9F. but the argument (an be outlined here

Consider moving linearly from c t, another configuration d. By convexity of

the constraints, all the intermediate configurations b satisfy the existing constriants
Among these, consider the configurations in which ti is actually a cut. These form
a set of open intervals in the line segment between c and d. Within each interval

4. the flow across 0(1b) is constant, because the trace code of ,(b) is unchanged until
(b) crosses some feature. And if b is a point where 0,(b) ceases to be a cut,

an endpoint of an interval, then the flow prevailing in that interval is at momt the
capacity of 0(b). (Here we rely on the results of Section 4F concerning chains of
cuts.) Hence t,(d) can be unsafe only if the capacity of 0' attains a local minimum
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Since IIJ = O(IFI2) and IGI = O(IFI IWI), this expression yields the claimed bound

of O(I514). The only term that exceeds O(IS13 log2 ISI) is the term IF12 III due to

repeated constraint solving at line 7
Which part of Algorithm C will dominate in practice is not clear. In the worst

(a.Se, 1(;J -aii be as high as £?( IFI WI), if some fQ(IWI) trace segments make necessary
,rOssings with Q(IFI) gates each. In most situations, however, [GI should be closer ".

to F1. Making reasonable estimates about the average run time of Algorithm F

and the density of the constraint graph I, one can predict that actual performance

fi the entire operation will probably approach O(IF13+,) for some small positive

\alue of t.

Space usage is easier to evaluate: the main contributors are the graphs G and I.
AhUI , with Algorithm R, which may use O(IFI IGI) space in the worst case. Thus the
%%orst case bountd is 0(1 FI 1WI), but none of the data structures of Algorithm C or

\Igorithin It is likely to approach its maximum size. The actual figure will depend

,111 the number of crossings between traces and certain cuts in the sketch (e.g.,

4,tte~l. and widl probably look like 9(f 'Ot ) for some constant a E (0, 1).

9D. The Adjacency Graph of a Sketch

\%e begin our study of Algorithm C at its foundations: the definition of the adja-
SI', v graph of a sketch, and how the sketch itself varies with configuration. We

prove that bot h are well defined, and relate the adjacency graph to the flows across
I 11t lhe goal of this section is to prove the correctness of Algorithm F, the pri-

INIar' suhroutine in the compaction algorithm. Some of the proofs in this section
use the (orresipmidence between sketches and designs discussed in Chapter 8. To

AVOIl confusion between sketches and sheets, we use the symbol E in place of S to
delnote a sketch

Displacing traces and gates

One consequence of our definition of the sketch E(d) is that gates and gate

rossings transform nicely from E to NE(d). Let r" be a partition of E, and for each

gate - = p c, q E I' define y(d) to be the linear path p(d) t, q(d). Then -f(d) is
a horizontal cut of E(d), and the homeomorphism H(. ,d) that takes E to E(d)

maps Im -r nto Im -(d). Hence the set F(d) = { -(d) : - E F } is a partition of

E(d). Furthermore, the restriction of H( . ,d) to Im-y is monotonic, because if L

is the line containing Im -y, then It( , d): L --+ L is a homeomorphism. Hence the

intersections of y(d) by traces in E(d) occur in the same order as the intersections
of -y by traces in E. In other words, the intersection graphs of E with r and E(d)
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with F(d) are isomorphic. The isomorphism between the two graphs takes each
island P to P(d), each trace 0 to 0(d), and so on.

The adjacency graph of a sketch is derived from its intersection graph by purely
graph-theoretic operations. Hence two sketches with isomorphic intersection graphs
also have isomorphic adjacency graphs.

Lemma 9d.1. The adjacency graph of a sketch is independent of configura-
tion. 0

One other fact about adjacency graphs is most conveniently proved within the

sketch model.

Lemma 9d.2. The skeleton of an adjacency graph is a forest.

Proof. Let G be the adjacency graph and T its skeleton. Recall that T is obtained
from G by deleting all gate arcs. Supposing that T contains a simple cycle C,
we derive a contradiction. Let A be a simple loop that passes through the regions
forming C, making one crossing with each trace that corresponds to an arc in C,
but no crossings with gates. Because A enters no region twice, none of these traces
can intersect A more than once. Hence they all end inside A, which means inside(A)

4contains a feature. Let X denote the set of points in the routing region that lie
on no gate. By Corollary 2c.6, A is essential in X. But since the gates form a
partition of the routing region, the components of X are simply connected. This
contradiction tells us that T is a forest. 1

Structure of the adjacency graph

To understand the adjacency graph, we pass to the design model as in Chapter 8.
Suppose E = (, ) is a sketch with partition F. Let S, be the corresponding sheet
with design E', and let F' denote the set { -Y' : - E F }. Let f be small enough that
every path in F' is a link in S,. Then 1 is a pattern for S, because F is a partition
of E. In addition, the cuts in F' are disjoint. Now let e be small enough that every

* interval of overlap between cuts in F and traces in 0, except those where the trace
does not cross over the cut, lies within S, - Bd S,. Then the intersection graph of
F and E is also the graph of intersections between F' and 0' in S,.

We interpret the construction of the reduced intersection graph of E as the
construction of an embedding of E) that conforms with F'. See Section 7B for
a description of the latter process. The intersection graph ignores overlaps where
traces fail to cross over gates; ignoring these corresponds to making 06 stable with
respect to F'. To reduce the intersection graph, we find two nodes that are adjacent
via both a trace and a gate, and remove whichever of those nodes represent crossings
of the gate by the trace. I call the trace edge in this situation removable.
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Section 9D The Adjacency Graph of a Sketch

The process of removing a removable edge corresponds exactly to the collapsing
of a collapsible subpath of a wire in 6'. A subpath of a wire is collapsible when

(1) it connects two crossings or connects a crossing to a terminal,

(2) the things it connects are also connected by a subpath of a seam,

(3) the middle of the wire subpath crosses no other seams,

(4) the middle of the seam subpath crosses no other wires, and

(5) the two subpaths are path-homotopic or form a trivial link.

Conditions (1) through (4) say that the wire subpath and the seam subpath corre-
spond to arcs of the intersection graph that connect the same nodes (terminals or
crossings). Next we show that condition (5) is superfluous, completing the corre-
spondence between removable edges and collapsible subpaths. One can check that
the effects on the intersection graph of removing a removable edge and of collapsing
a collapsible subpath are identical.

The homotopy condition (5) is a consequence of the others because F is a
pattern. Suppose wa:t and "y.:b are the wire and seam subpaths, satisfying conditions
(1) through (4), where w E Wb and -Y E I". There are two cases: either (a,s) and
(b, t) are both crossings, or else only (a,s) is a crossing and ,;(t) shares a fringe F
with -y(b). In the former case, ,:t and "y.:b lie within a single piece of the pattern F
(because 4,,0t is clean in rb), and hence they are path-homotopic. In the latter case,
we must show that the link Wt:, * Va:b is trivial. Because terminals in E are points,
and F is derived from such a terminal, there are at most two seams in r incident
on F. Hence there is a path i in F from y(b) to w(t) crosses over no seams, and
leaves -y on the same side that w.:, does. Consequently the loop ,,t:o * "ya:b * K lies
within a single piece of F, which makes it inessential. Hence the link ,t:, * Ya:b is

path-homotopic to R and therefore trivial.
Our conclusion is that the reduced intersection graph of F and E is the graph of

intersections of F and an embedding V of 0' having no collapsible subpaths. By
Proposition 7b.7, this design 0' conforms with *. One important consequence is
the following.

Lemma 9d.3. Let T be the skeleton of an adjacency graph. Let b and b' be
two nodes of T bordering a gate -y from below, and let a and a' be adjacent to b
and b', respectively, across -y. The distance from a to a' in T is equal to the distance
from b to Y in T.
Proof. The dual of the adjacency graph is the reduced intersection graph of the
pattern F and the sketch E. By construction, wherever a trace in this realization
touches a gate in F, it crosses over that gate. Hence the nodes bordering -y from
above and below are connected in the structure shown in Figure 9d-1. It suffices to
show that no two nodes on the top row in Figure 9d-1 are identical, and similarly

- 283 -

4n



Sketch Compaction Chapter 9

for the bottom row. If so, then the upper and lower paths in Figure 9d- 1 are simple.
and since T is a forest (Lemma 9d.2), a simple path between two nodes in T has
minimal length. Finally, the sequence of traces crossed by the upper path is identical

to that crossed by the lower path. The lemma will follow immediately.

Figure Qd-1. Nodes of the adjacency graph that border on a gate rhe striped
line is the gate and the grey paths are parts of traces. Circles are nodes. light lines
are gate edges, and dark lines are trace edges.

By symmetry, it is enough to prove that no two nodes on the top row &re
the same. Suppose otherwise; let N be a node of T that borders - along two
separate intervals. Every trace crossing over -y between these two intervals must
turn and cross back without crossing any other gates in between (We are using
Theorem 2c.1 here.) Passing to the design EO and the pattern r, some wire .; E 0'

makes crossings (a,s) and (b,t) with a seam -y' such that the qubpath .;., is clean
in F. Consequently wo:t and -y..: lie within a single piece of F, and thus are
path-homotopic. Therefore the crossings (as) and (b,t) of 1 by ,. are similar.
contradicting the conformity of W with I . 0

Use of the adjacency graph

Now we apply Corollar 7c.9 to characterize the flow across a cut in terms of
the adjacency graph.

Proposition 9d.4. The flow across a direct cut a in the sketch E is the length
ol the shortest path in the adjacency graph of E that

(1) begins at a node bordering on a(O) in the direction of a.

(2) ends at a node bordering on a(1) in the direction of &, and

(3) has gate Iist equal to that of a. E3

Proof. Let G be the adjacency graph and F the partition of " used in its con-
struction. We pass to the design model and consider the cut a' derived from a. By
Proposition 8a.5, the congestion of ct settles at that of a, and since a' is simple,
its congestion equals its flow by Proposition 4b.6. So it suffices to show that the
length of the shortest path in G satisfying (1)-(3) is the value at which flow(a', W')
settles.
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Section 9E The Abstract Compaction Algorithm

The first term on the right is just t,+,, and Lemma 9d.3 shows that t(a+1 ) = t(ai+ ).

We conclude that the invariant holds for i + 1. 0

9E. The Abstract Compaction Algorithm

To prove the correctness of Algorithm C, the compaction algorithm, we proceed
by way of an intermediate procedure called Algorithm A, the abstract compaction

algorithm. The name derives from the fact that Algorithm A (which is not really an
algorithm at all, but just a mathematical definition) abstracts the essential element
of Algorithm C, namely the iterative definition of the subspace of configurations to
be searched for a minimum width sketch. Algorithm A defines a sequence Ao, A1,
... , A, of increasingly restricted subsets of the configuration space. These sets will
correspond to sets of configurations satisfying the constraint system I at different
stages of Algorithm C.

The first part of this section is devoted to the statement of Algorithm A and its
preconditions. The rest of the section demonstrates the correctness of Algorithm A
by proving the following theorem.

Theorem 9e.1. The output Am of Algorithm A is the connected component

of { c E C(S) : S(c) is routable } that contains the initial configuration 0.

Section 9F will draw a correspondence between Algorithms C and A, and prove
that Am is precisely the set of configurations that satisfy the final constraint system

I of Algorithm C. Together with Theorem 9e.1, this implies that the constraints
generated by Algorithm C are both necessary and optimal, if only convex constraints
are allowed. Finally, because Algorithm C finds an optimal configuration among
those satisfying the constraint system, it will follow that Algorithm C is correct,
and that it finds the best solution available to any algorithm of its type.

There are at least two reasons for taking this abstract approach. First of all, it
simplifies the correctness proof by separating the mathematical from the algorithmic

concerns. Second, and more important, it clarifies the assumptions on which the
compaction algorithm relies. An understanding of these assumptions will allow
Algorithm C to be easily modified.

Assumptions

The input to Algorithm A is a routable sketch S together with a sequence
qv(S) = (o1,... , 0km) of potential cuts of S; the output is a set of configurations
A,. As a precondition of Algorithm A, the potential cuts %P(S) must determine the
routability of the modified sketches S(d). Specifi ally, they must have the following
property.
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Routability property. Assume S(O) is routable, and let d E C(S) be a configu-
ration. If d fails to protect some element of T, then S(d) is not routable. But if for
all t E [0, 1] the configuration td protects every 0 E T(S), then S(d) is routable.

The capacities of the potential cuts must also have a special property.

Convexity property. For each 4 E T(S), the function d '-* cap(O(d)) is convex.

Actually a weaker property suffices, namely that for each line L in configuration
space, there is a point c of L at which the capacity cap(O(c)) is minimal, and
cap(O(d)) is nondecreasing as d moves away from c along L. The simpler condition
of convexity is general enough for my purposes, however.

In principle, my compaction method depends on only two further assumptions
about the potential cuts %I(S).

Ordering property. Let the configuration d E C(S) protect Oi for all i < k. If d
lies on the frontier of { c E C(S) : 0(c) is a cut }, then every cut that is a subpath
of k(d) is either safe or empty.

Boundary property. The configuration space C(S) is open in Rn, and there is
a closed set D C R such that all configurations in C(S) - D fail to protect some
potential cut in I.

In practice, of course, we also desire that the sequence (0') be computable in poly-
nomial time. As we show in Section 9F, the sequence of potential cuts examined by
Algorithm C has all these desirable properties.

The abstract algorithm

Before plunging into the algorithm, I shall provide a brief overview. Algorithm A
computes a sequence of polytopes in configuration space, each one contained in the
last. The configurations in the kth polytope will protect the first k potential cuts in
VI(S). To process Ok, the kth potential cut, the algorithm first determines whether
*k is unsafe and nonempty in any configuration in the current polytope. If not,
the algorithm ignores Ok. Otherwise, it defines a set of unacceptable configurations
in which the capacity of 4k falls below some critical value. This set contains all
configurations in the current polytope that fail to protect kk. Its complement
consists of two half-spaces: one in which the lower endpoint of Ok is far to the right
of the upper endpoint, and one in which the situation is reversed. Because the initial

configuration is always acceptable, it must fall into one half-space or the other; the
kth polytope is determined by intersecting the (k-1)st polytope with the half-space
that contains 0. Thus Algorithm A eliminates configurations not reachable from
the initial one.
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Section 9E The Abstract Compaction Algorithm

Algorithm A. (Finds the set of acceptable modifications of a sketch.)

Input: a legal sketch S with n modules specified, and a sequence (01 ,... , Om) of
potential cuts of S with the routability, convexity, ordering, and boundary

properties.
Output: a subset of the configuration space C(S).

Local variables: an integer k, polytopes Ak of acceptable configurations, sets Uk

of unacceptable configurations, and inequalities Ak.

1. Ao +- C(S);
2. fork+- 1 tomdo
3. if some c E Ak-I does not protect tkA then4. UA; +- I d E_ R" : cap(Ok(d)) < flow(Ok(c));

5. If the endpoints of IN lie on the features Pk and Qk, write Uk as

{ d : A- < ApQ(d) < A+ 1. Either 0 E (-oo, A-] or 0 E [A+, o).

6. A. -- Ap.Qh(d) > A+, if 0 > A+;

I APkQk(d) < A-, if 0 < A-;

7. A+-{ d E Ak-i : d satisfies Ak}
8. else Ak- AL-1; Uk - -;
9. return Am.

Some remarks about Algorithm A are in order.

" The set Uk is defined in terms of an arbitrary configuration c E Ak-1 that

fails to protect ikk. We will soon show that Uk is independent of the choice

of c.

" The constraint Ak is a simple linear inequality between d,(p,) and d,(Q,),

and hence defines a closed half-space in R". Since A0 is convex, the set Ak,

is therefore convex for each k.

" In the light of the following results, the definition of Ak in lines 6-7 may be

read as "A. is the component of Aj,- 1 - Uk that contains 0".

Core of the correctness proof

The following definition and lemma are fundamental to the correctness proof.

The lemma's proof reveals the purpose of the convexity and ordering properties.

Definition 9e.2. Two configurations, d and d', are equivalent with respect to

a potential cut 1k if for every configuration bt = (1 - t)d + td' with t E [0, 1] the

path tk(bt) is a cut. This relation is written 'd ;, d' with respect to ?P'.

In configurations that are equivalent with respect to a potential cut 1, the

flow across 1 is equal. To see why, suppose d d' with respect to 1, and let
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H: R' x C(S) --+ R2 be the map used to define the sketch S(c) for c E C(S). (We
have S(c) = H(., c) o S(O).) Because H(., d) and H(., d') are homeomorphisms,
we have

flow across 0 (d) in S(d) = flow across H(. d)- o V'(d) in S(O), and

flow across 0(d') in S(d') = flow across H(. ,d')- o 0(d') in S(0).

A bridge homotopy between the two cuts on the right is (s, t) '-+ Or(s) where Of =

H(., bt)- o 4(bt). (Both 0 and H are piecewise linear.) Hence they have the same
flow (congestion) in S(0) by Corollary 8a.6. For similar reasons, either 0(d) and
V,(d') are both empty or else both are nonempty.

Lemma 9e.3. Let 4 be a potential cut in the sketch S, let d and d' be configu-
rations in C(S), and put bt = (1 - t)d + td' for t E [0, 1]. Suppose that the capacity
function t 4 cap(ik(bt)) is convex, and that whenever bt lies on the frontier of
{ c E C(S) : 4(c) is a cut }, all cuts that are subpaths of 0(b) are safe or empty.

(1) If d' protects 4' but d does not, then cap(O(d')) flow(O(d)).
(2) If neither d nor d' protects 4, then d ,,: d' with respect to 4.

Proof. As t varies from 0 to 1, the sketch S(bt) varies from S(d) to S(d'), and
the linear path at = 4,(bt) is sometimes a cut, and sometimes it crosses features.
Denote the flow across at by ft = flow(O(bt)), and the capacity (or "length") of at
by 1, = cap(O(bt)).

We first argue that the set Z = { t E [0, 1] : at is a cut }, considered as a
subspace of the unit interval, is open. Let at be a cut; say it connects the features
P and Q. There is some positive distance between at and every feature but P
and Q; because bt E C(S), no other features can touch the endpoints of at. And
since at and the module positions in S(bt) are all continuous functions of t, there
is some neighborhood U of t such that a is a cut whenever u E U. So Z is open,
and hence it consists of disjoint intervals, each one open in (0, 11.

Now let us focus attention on one of these intervals, call it T. For all s, t E T
the configurations b, and bt are equivalent with respect to 7k. Hence the flow ft is
a constant fT for all t E T. And if s lies on the frontier of T, considering T as a
subspace of I, then a, is not a cut. The following claim is the crux of the argument.

Claim: If t E T and s E Fr T, the configuration bt protects 4 unless It < 14.

Consider the sketch S(b.). At this point, one or more features have just con-
tacted a,, and hence a, is broken up into a sequence of cuts a,, ... , a. Because
b, is on the frontier of the set of configurations that make 4 a cut, all the cuts
a are safe or empty. If the cut at is empty, then 4 is fixed with respect to the
module that contains its endpoints, and so the cuts a, and al must connect differ-
ent modules. Thus al and al are safe, not empty; their capacities are nonnegative.
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Hence 1, > 0 also. In this case fT 1, because fT = 0. Now suppose that at is not
empty. If fT were to exceed 1,, one of these cuts ai would be unsafe and nonempty.
One could prove this rigorously by passing to the design model and appealing to
Proposition 4f.1 and Lemma 4f.3. We conclude that fT < 1. If bt fails to protect
4' then It < fT, so It < 1,. This proves the claim.

The lemma is now straightforward. Both parts of the lemma assume that d fails
to protect k, so we may assume that ao = 0(d) is a cut, and that lo < fo. Suppose
first that d and d' are equivalent with respect to i/. Then fi = fo, and neither ao
nor o is empty. If d' protects ', then a, is safe, and so 11 > fl. Thus 11 >_ fo,
establishing (1). Conclusion (2) is trivial if d - d', so we now assume d 6 d' with
respect to '. Then there exists t E (0, 1] such that at is not a cut. Let s be the
smallest such value, and consider the interval T = [0, s). Since d = bo does not
protect i', the claim implies lo < 1o. Now because the function t ' It is convex,
it has at most one local minimum in [0, 1]. Because 10 < 1, the minimum value of
it must occur in the interval (-oo, s). Hence It is nondecreasing on [s, 1), and we
have 11 > 1, > fo. This proves conclusion (1), because 11 is cap(o(d')) and fo is
flow(Vk(d)). Now we prove (2) by showing that d' protects 4. If a, is a cut, let 0
be the largest value such that a,3 is not a cut. (One must exist, for we are assuming
d 6 d'.) Applying the claim to the interval T = (/3, 1], we find that b1 protects 4
because 11 _> l. Since bi = d', this proves statement (2). 0

Body of the correctness proof

Lemma 9e.3 provides us with the following lemma, our main tool for proving
Theorem 9e.1. We shall use this lemma frequently.

Lemma 9e.4. (Potential Cut Lemma) Suppose 1 < k < m, and let d and d'
be configurations in Ak-1.

(1) If d' protects Ok but d does not, then cap(1kk(d')) > flow(Ok(d)).
(2) If neither d nor d' protects O' k, then d ;. d' with respect to 4'k.

f Statement (2) implies that any two configurations d, d' E Ak-1 that fail to
protect Ok must satisfy flow(k(d)) = flow(Ok(d')). Thus Lemma 9e.4 shows that
the sets Uk defined in line 4 of Algorithm A are uniquely determined.

The proof of Lemma 9e.4 depends on several facts about the set Ak-1. In
particular, the lemma makes no sense unless Ak-1 is well defined. On the other
hand, Ak is well defined only if the Potential Cut Lemma holds for Ak- 1 . We must
therefore prove Lemma 9e.4 in parallel with the following claim.

Lemma 9e.5. For 1 < k < m, the following statements hold:
(3) If p(Pk) = p(Qk), then every configuration c E Ak-l protects Ok.
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(4) The set Ak is well defined by Algorithm A.
(5) The point 0 lies in Ak.
(6) Every configuration in Ak protects the potential cuts 0,1 through Ok.

Proof of Lemmas 9e.4 and 9e.5. The proof proceeds by induction on k, with
the inductive hypothesis being the conjunction of (4) through (6). A basis for this
hypothesis is easily established at k = 0: the set A0 is obviously well defined, 0 E Ao
by definition, and condition (6) is vacuously true. So assume k > 1. The key step
is the proof of (1) and (2), in Lemma 9e.4, from the inductive hypothesis.

(1,2) We apply Lemma 9e.3 to the configurations d and d' and the potential
cut Ok. The convexity property implies that the function b '-4 cap(tk(b)) is convex,
and hence t I cap(k(bt)) is convex. And since Ak,-1 is a convex set, the inductive
hypothesis implies that every configuration C E L protects the potential cuts 0 1
through 'k-. This fact, combined with the ordering property, demonstrates the
final assumption of Lemma 9e.3. The conclusion of that lemma is identical to the
conclusion of Lemma 9e.4.

(3) Suppose P(Pk) = P(Qk), and apply parts (1) and (2) to i1 with 0 in place
of d' and c in place of d. Since S(0) is routable, the routability property implies that
0 protects k. Hence only part (1) can apply; it says that cap(kk(O)) _ flow(0k(c))
if c fails to protect 'kk. But our assumption that p(P) = p(Qk) implies that the
capacity of Ok is independent of configuration. Therefore cap(Ok(c)) >_ flow(,k(c)),
and 3o Vk(c) cannot be unsafe. Therefore c protects ;bk.

(4) For Ak to be well defined, the set U, defined in line 4 of Algorithm A must
have the specific form { d E C(S) : A- < AQh(d) < A+ }, for some A- and A+.
Recall that Uk includes a point d if and only if the capacity cap(01,(d)) of Ok(d)
is less than the constant f = flow(ikk(c)). But by the definition of a potential cut,
Vk(d) depends only on ApQ.(d). Hence it suffices to show that the set

{ ApkQ(d): d E R' and cap(VPk(d)) < f }

is a nonempty open interval (A-, A+). By part (3), line 4 is only reached if u(Pk) #
P(Qk). Hence we may choose a line L through c on which AphQ,(d) is not constant.
The convexity property of ?k, implies that the set { d E L : cap(ok(d)) < f } is
a open interval of L; it is nonempty because it contains c. Since APkQk(d) is a
nonconstant linear function on L, the set

{ ApQ.(d): d E L and cap(1,,(d)) <f }

is also a nonempty open interval. This is enough, because every value ApoQn(d) is
represented by some d E L.
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(5) By the induction hypothesis, 0 E Ak- 1. If every c E A.- 1 protects ?k,,

then 0 E Ak trivially. Otherwise, apply (1) to 0 and c. (Because S(O) is routable,

0 protects Ob, by the routability property.) So cap(i,,(O)) >_ flow(tr,,(c)), whence

0 U,. Because Ap,,Q (O) = 0, by definition, we have 0 (A-,A+). Thus 0
satisfies the constraint AA defined at line 6, and so 0 E Ak.

(6) Since A, _ A- 1, every configuration d E Ak protects i1' through Ok-1,

by the induction hypothesis; it remains to show that every configuration d E A,,
protects kAb,. Suppose that d E Ak- 1 fails to protect Okk. Then Uk is nonempty, and

is defined in terms of some configuration c. By part (2), d ; c with respect to

0dk, and in particular flow(Ok(d)) = flow(k(c)). Because d does not protect k,,

certainly cap(lkk(d)) < flow(Tk,(d)), and it follows that d E Uk. But the constraint

Ak excludes all members of Uk from Ak. Therefore d 0 Ak. D

From the above lemma, most of Theorem 9e.1 follows quickly. First of all,
the initial configuration 0 is a member of Am by claim (5). Second, if d E A,,,,
then for all t E [0, 11, the configuration td lies in A,, and hence protects every S.

0' E V(S) by claim (6). Therefore by the routability property, S(d) is routable

for all d E A,,. It remains to argue that A, is a single connected component of

{ d E C(S) : S(d) is routable }. To do so, we make use of an elementary topological

result. A subset X of a topological space is said to surround another subset Y if Y

lies in the interior of X, and the closure of Y is contained in X. If X surrounds the

nonempty set Y, then Y is a connected component of the complement of X - Y.

Lemma 9e.6. For 0 < k < m, the set Am. is surrounded by the region

X,,= Ak U U AkI~

Proof. It suffices to show that A, is closed and Xk is open, because clearly A,,
Xk,. First the former. By the boundary property, the configurations that protect
all the potential cuts V(S) lie within a closed subset D of C(S). By claim (6)
of Lemma 9e.5, all points of A, protect every 0 E V(S). Therefore Am is the
intersection of D with the set of configurations that satisfy the inequalities Ak.

Each configuration A, defines a closed subset of R". Therefore Am is closed.

Now we prove by induction on k that X is open. The basis case, X0 = A0 ,

is guaranteed by the boundary property. Let k > 0, and consider the nontrivial
case when Uk is nonempty. From the definition of Xk we derive Xk = (X.-I -

Ak-) U Ak U (Ak- 1 - U,), which reduces to Xk- 1 - (Ak- 1 - U, - Ak). The set

B A" Ak- 1 - Uk - Ak is the intersection of Ak- 1 with one of the closed half-spaces

forming the complement of Uk; it remains to show that B is closed in X_ 1. But

A-, is just the subset of X. 1 satisfying the constraints Ai, for all i < k, so B is
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X,-1 intersected with finitely many closed half-spaces. Therefore Xk = Xk-1 - B
is open. 0

Setting k = m in Lemma 9e.6, we find that Ui=,(AiI nU) disconnects Am from
the rest of R". Hence the connected component of { d E C(S) : S(d) is routable }
that contains A, cannot be a proper superset of An, unless it also contains a point
in A- 1 In U for some i. But if d E Ai- 1 corresponds to a routable sketch, then
(by the routability property) it protects tk,, and statement (1) of the Potential Cut
Lemma applies to d and the configuration c E Ai- 1 used to define Ui. It shows
that cap(k,(d)) _ flow(oi(c)), which means that d U. Therefore d E Ai- 1 n Ui
implies that S(d) is not routable. So Am is precisely equal to the component
of { d E C(S) : S(d) is routable } that contains 0. This completes the proof of
Theorem 9e.1.

9F. Implementing the Abstract Algorithm

In this section, we build upon the results of Sections 9D and 9E to prove the
correctness of Algorithm C, the concrete compaction algorithm. The hard part of
the proof is over: Algorithm A, which is an abstract description of the compaction
algorithm, is proven correct by Theorem 9e.1 of the previous section. It remains
to show that Algorithm C is just a special case of Algorithm A. There are two
steps to this process: first, to identify the potential cuts that Algorithm C uses,
and show that they satisfy the preconditions of Algorithm A; and second, to prove
an explicit correspondence between the quantities computed by the two algorithms.
The correctness of the compaction algorithm will then follow from the correctness
of its subroutines (Algorithms F and R) along with Theorem 9e.1.

Preconditions of Algorithm A

Our first task is to show that the potential cuts used by Algorithm C satisfy
the requirements of Algorithm A, namely the routability, capacity, ordering, and

* boundary properties. The potential cuts in question are of three types.

(1) Horizontal potential cuts Opq where either p or q is a feature endpoint.

(2) Diagonal potential cuts Opq where p and q are feature endpoints.

(3) Critical potential cuts XpQ where p is a feature endpoint.

Let S denote the sketch input to Algorithm C, and let IT(S) contain all the potential
cuts for S of types 1-3. We number these cuts b1, ... , 0,/ in the order that
Algorithm C examines them. Since Algorithm C considers horizontal potential cuts
first, the cuts of type (1) are ;bl, ... , 0bh for some h. Next come the potential cuts of
type 2 in order of height, and finally the potential cuts of type 3 in order of height.
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We treat Algorithm C as if it processed all the potential cuts in %I(S), although
it actually ignores those that connect features in the same module. Part (3) of
Lemma 9e.5 says that such potential cuts generate no constraints; hence Algo-
rithm C is justified in ignoring them.

Proposition 9f.1. The sequence TI(S) has the routability, convexity, ordering,
and boundary properties.

Proof. The routability property is easiest. If a configuration d E C(S) fills to
protect some potential cut 4' E T(S), then 0(d) is unsafe and nonempty in the
sketch S(d). By Proposition 8b.3, then, S(d) is unroutable. On the other hand,
if every configuration td with t E [0, 1] protects every potential cut in T (S), then
in particular d protects all the critical potential cuts of S. By Theorem 9c.2, the
sketch S(d) is therefore routable.

To check the convexity property for a potential cut 4 E T(S), it is enough to
show that the function d -* 110(d)JI is convex on C(S). Let do, d1 be arbitrary
configurations in C(S), and for t E [0, 11 define dt = (1 -t)do+td. Say 4 connects
the features P and Q. For each t we have 0(d,)(0) = p,(d,) and 0(d,)(1) = q,(dt)
for some pt E P and qt E Q. Put It = IJqt(dt) - pt(dt)lJ = JJ4(dt)]I. We must show
that 1, < (1 -t) 0 +t 1l. If 0 = 4 pq for somepand q, thenq, = qandp, =pfor
all t E [0, 1]. Consequently the vector q,(dt) - pt(dt) changes linearly with t, and so
the convexity of 11" -1 implies that It _ (1 -t)lo + tli. Now suppose 4' = XpQ for some
feature Q and feature endpoint p. Then pt = p for all t, and qt has the property
that for all q E Q,

Iqt(dt) - p(dt)I 11 jq(dt) - p(dt) 11 (9-2)

Because Q is a convex set, we may choose q = (1 - t)qo + tq1 . Then q(dt) is linear a.
in t, and equals q0(do) or ql(d 1 ) if t is 0 or 1, respectively. Of course, p(dt) is also
linear in t. Hence by the convexity of Ii' II, the right-hand side of (9-2) is at most
(1 - t)lo + tli. The left-hand side of (9-2) is just It, so the length of XQ is a convex
function. Therefore 'I(S) has the convexity property.

Now we argue that the sequence TI(S) = ( ti, . . . , 0'm) has the ordering property.
Let the configuration d E C(S) protect 4i for all i < k, and suppose d E Fr{ C E
C(S) : 0(c) is a cut }. We show that every cut that is a subpath of Ok(d) is either
-i(d), for some i < k, or its reverse. Since d profects 4i, such cuts are either safe
or empty. For d to lie in Fr{ c E C(S) : Ok(c) is a cut } means that the features
interrupting Ok(d) must do so at their endpoints, and furthermore that Ok(d) is
not horizontal. If ?Pk = 40pq for some feature endpoints p and q, then every cut that
is a subpath of Ok(d) begins and ends at feature endpoints, and has smaller height
than Ok. All such cuts appear in the list (01, .. . , k- ). The other case is only
slightly harder. Suppose 0k = XpQ for some feature Q and feature endpoint p. Let

- 295 -

munro Mr nm [i



Sketch Compaction Chapter 9

a be a subcut of Ikk(d) that ends on Q(d), if one exists. Then all cuts that are
subpaths of tk(d), except possibly a and &, are cuts between feature endpoints;
they have the form Oi(d) for some i < k. If a exists, it is a critical cut from the
feature endpoint a(O) to Q(d), and has the form XrQ(d) where a(O) = r(d). As
noted in Section 9C, the height of XpQ exceeds that of XQ, and hence XQ appears
in (01, ... , Ok-1)-

To check the boundary property, we must exhibit a closed set D C R' such that
all configurations in C(S) - D fail to protect some potential cut in T. (That C(S) is
open follows directly from its definition.) Let w denote the minimum of the widths
of the elements of S. The space C(S) was defined as the set of configurations d such
that for all points p and q of S with p,, = qy and p, < q, we have Ap(d) > 0. We
may assume that p(p) 0 p(q). Define D the same way, but replace the condition
Apq(d) > 0 by the constraint Apq(d) > w. Clearly D is closed in R. And if d is a
configuration in C(d) - D, then there are two features in separate modules of S(d)
whose separation is less than w. Choose features P and Q such that the horizontal
separation between P(d) and Q(d) is minimal. The minimum separation is realized
at a feature endpoint, so there are points p E P and q E Q such that Op. E T(S)
and I 0pq(d)JI < w. By the choice of P and Q, no features intervene between p(d)
and q(d), and hence Oq(d) is a cut. It is nonempty because it connects different
islands, and is unsafe because its capacity is negative. Thus d fails to protect the
potential cut kpq E '(S). 0

Correspondence between the algorithms

The final phase of our proof strategy involves showing that the constraints com-
puted by the concrete algorithm define the same space as the constraints Ak defined
abstractly. This fact will imply that the compaction algorithm searches precisely
the set A,, of acceptable configurations, and correctness will follow quickly. In or-
der to state the correspondence, let Co denote the set of configurations satisfying
the constraint system I defined at line 2 of Algorithm C, and let Ck denote those
configurations satisfying I after the kth iteration on the loop in lines 3-6.

Lemma 9f.2. For all k satisfying h < k < m, the sets Ck-h and Ak are
identical.

Proof. Recall that h is the number of horizontal cuts in the sequence '(S). We
prove the lemma by induction on k, the basis case being k = h. Any configuration
in Ah is in C(S), because Ah C A0 , and also protects the horizontal potential cuts,
according to part (6) of Lemma 9e.5. Therefore Ah g Co. On the other hand,
you may check that when the constraint A, exists, for k < h, it corresponds to the
potential cut in I0 induced by k. (Here we use Proposition 9d.5, which establishes
the correctness of Algorithm F.) Therefore C0 C Ah.
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For the inductive step, suppose that Ck-h-1 = Ak-.1 We first draw a correspon-
dence between the configurations c found by Algorithms A and C. The key observa-
tion is that the configuration c found by Algorithm C at line 4 minimizes the capac-
ity cap(Ok(c)) over all t E Ck-h-1 = Ak-l. (Dijkstra's algorithm is applicable here,
btause according to Lemma 9e.5, the initial configuration 0 satisfies the constraint
system.) We wish to argue that if any d E Ak-1 fails to protect bk, then neither
does c. Suppose to the contrary that c protects Ok but d E Ak-1 does not. Then by
the Potential Cut Lemma (9e.4), statement (1), we have cap(lk(c)) flow(V.k(d)).
But cap(ibk,(c)) < cap(tkk(d)) by the choice of c, so cap(Ok(d)) >_ flow(Ok(d)), and
d protects Vlk after all. Thus line 7 of Algorithm C correctly implements line 3 of
Algorithm A.

There are now two cases to consider. If the configuration c does protect Ok,

then so do all configurations in Ak-1. Therefore Algorithm A sets Ak to Ak:-, and
Algorithm C does not change I, so we have Ck-h = Ak as desired. On the other
hand, if c does not protect Okk, then Algorithm C adds to I the constraint derived
from 0' in the configuration c. This constraint is precisely Ak. .

We conclude that the configurations that obey the final constraint system I
in Algorithm C are precisely those in A,. (If the design system adds extra con-
straints to I, some configurations in A, may be excluded.) Theorem 9e.1, which
characterizes Am, now implies that every configuration obeying I is routable, and
that the constraints I are optimal, unless the constraints are allowed to define a
disconnected region of configuration space. Finally, line 10 of Algorithm C finds
an optimal configuration obeying the constraint system I. The resulting sketch is
guaranteed to be routable, and hence Algorithm R can regenerate the layout. This
completes the proof that the compaction algorithm is correct.

Optimizations of Algorithm C

Both the time and space performance of Algorithm C can be improved by reduc-
ing the size of the adjacency graph. One therefore wishes to choose gates in such a
way as to minimize the number of crossings between traces and gates. Although we
required the gates to form a partition of the sketch, one can get by with fewer. If the
routing region is connected, a minimal set of gates is such that the set of points in
the routing region but not on any gate is simply connected. Equivalently, if islands
and gates are considered as the nodes and arcs, respectively, of a graph, then this

4q graph should be a tree. One must be careful, however, to keep track of the direc-
tion of every crossing among the traces, gates, and terminals. The removable nodes
and edges of the intersection graph depend upon these directions of crossing in a
somewhat complicated manner. In essence, one must ensure that when modifying
the intersection graph, the traces can be rerouted to reflect the new structure.
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A minimum-cost spanning tree algorithm can be used to find a set of gates that
cross as few traces as possible. Every horizontal cut between different islands is a
potential gate, but we may restrict our attention to horizontal cuts that are incident
on feature endpoints. There are at most O(IFI) such cuts, and they can be thought
of as the arcs of a graph H over the islands. The cost of a cut will be the number of
crossings of the cut by traces in the original sketch; costs can be computed efficiently
using a scanning algorithm as in Section ID. The gates are chosen to be the arcs in
a minimum-cost spanning tree of the graph H.

Another way to speed up Algorithm C is to ignore potential cuts that cannot
generate constraints. For example, if a potential cut Obp. has minimal capacity in
the initial configuration, it cannot generate a constraint. This observation follows
from statement (1) of the Potential Cut Lemma. More generally, if a potential cut
is occluded in such a way that it cannot become a cut before reaching a minimum
of capacity, then this potential cut may be ignored. Lemma 9e.4 (or more generally,
Lemma 9e.3) can be applied in many other ways to justify the omission of potential
cuts. For example, I showed in [29] that if the wiring norm is rectilinear-that is,
if I1(x, y)II = max{I~xI lyll-and the features are all horizontal or vertical, then the
critical potential cuts may be omitted altogether.

None of these improvements affect the fact that Algorithm C requires l(IFI13)
time, not just in the worst case, but in almost every case. To reduce this amount,
one must avoid considering most of the potential cuts. Most constraints in practice
are likely to be local, so one can try to ignore all potential cuts of sufficiently large

4 height. If one solves the constraint system before evaluating all the potential cuts,
and the routing algorithm succeeds, then compaction may be terminated. If the
routing algorithm fails, more potential cuts must be considered. A good heuristic
for exploiting locality could reduce the average-case running time to quadratic or
less, though the leading constant might be large.

Ultimately, the slowness of Algorithm C is due to its generality. The islands in
a sketch compaction problem allows may be bound into modules in an arbitrary
way, whereas in many cases of interest only local connections are needed. When all

* features are independent, as usually occurs in the compaction of routing channels,

simpler and faster techniques are available that still insert all useful jogs automati-
cally [591.

Wire length minimization

Usually when performing compaction one would like to improve wire lengths as
well as layout area. Algorithm C minimizes trace lengths in a trivial sense, namely
that the wires make no unnecessary detours. Because it uses Algorithm R, the
lengths of traces are minimal given the positions of the features that it supplies. By
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default Algorithm C moves each module as close to the left-hand wall as possible,
which will often be far from optimal. But it can be modified to support whatever
wire-length minimization technique you favor. The constraint graph constructed
by Algorithm C specifies the set of acceptable output configurations. Solving the
constraint system with a longest-path algorithm determine the minimum separation
between the walls. One can add the constraint that the walls be separated by that
distance, thus defining a smaller set of acceptable configurations. One may then
choose a configuration in this set by any desired means. If one can estimate the
effects of configuration on total wire length, then one can find a configuration that
nearly minimizes wire length. The problem of finding a good heuristic for making
this estimate is open, but probably not too difficult.

Summary

I have presented a polynomial-time algorithm for one-dimensional layout com-
paction with automatic jog insertion. It works whenever layouts can be partitioned
into layers such that wires on two different layers interact only via modules that are
present on both. The algorithm takes its input as a set of proper sketches, one for
each routing layer, and produces output in the same form. (For practical purposes,
this means the input must be a legal layout.) Algorithm C treats the special case
of one routing layer, which is no easier to compact than many connected layers.
Jog insertion is achieved by treating wires not as objects to be moved, but only as
indicators of layout topology. Using the sketch routability theorem, the algorithm
converts the wires into constraints on module positions that ensure that the wires
have sufficient room to be routed. Having determined a new placement for the
modules, it then invokes a single-layer router (Algorithm R) to restore the wires
with as many jogs as necessary. The compactor thereby inserts all jogs that help to
reduce the width of the layout. It may use more jogs than necessary, however.

The version of Algorithm C presented here substantially generalizes the com-
paction algorithms in my earlier papers [28, 291. Those algorithms worked only in a
grid-based wiring model, while Algorithm C allows features and traces to be other
than rectilinear, to have different widths, and to be governed by an arbitrary piece-
wise linear wiring norm. These extensions were made possible, of course, by the
theory of single-layer wire routing established in Chapters 1 and 8. Further exten-
sions or reformulations of this theory, as we will discuss in the next chapter, should
lead to further generalizations of Algorithm C. Unlike the reasoning that under-
lies Algorithm R, the correctness proof of Algorithm C is nearly modular. Having
the requirements of Algorithm A spelled out in Section 9E means that changes to
Algorithm C can be easily justified.
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Chapter 10

Extensions of the Theorems and Algorithms

This chapter is all about the sketch model: the rationale behind it, the extensions
and modifications it supports, how the sketch algorithms can be adapted to handle
these extensions, and how sketches may be used to represent circuit layers. For the
most part the proposed changes to the sketch model are orthogonal, meaning that
they can be adopted or ignored independently. Since many facts about the sketch
model wili be illustrated by reference to the design model, in this chapter I use the
terms 'wire' ar i 'trace' interchangeably.

Chapter outline

The chapter is divided into four major sections. The first chiefly concerns the
representation of standard devices as parts of sketches. It presents a view of separa-
tion constraints based on the convolution of geometric regions, and relates it to the
use of wiring norms to define which sketches are proper. It suggests how the sketch
model may be modified so that separation constraints can be defined independently
for all pairs of sketch elements. Finally, it describes how to change the Algorithms
T and R so that the terminals of each trace are permitted to approach one another.
Both these extensions are helpful for representing integrated circuit layers.

Section 10B examines the aspects of the sketch model that govern the shapes
of traces: the wiring norm, the allowed shapes of features, and the fact that traces
are not constrained to a grid. It first shows that the sketch model does, in fact,
subsume the grid-based wiring model. If all the features of a sketch lie in a grid of
unit pitch, measured in a rectilinear wiring norm, and all the elements of the sketch
have width 1, then the traces may be constrained to the grid without affecting
routability. Moreover, one can add a simple postprocessing phase to Algorithm R

to ensure that every trace is routed within the grid.
Section 10B then considers wiring rules at the opposite extreme: curvilinear

rules in which the wiring norm is not piecewise linear. The theory of single-layer
routing does not change substantially if the wiring norm is, say, the euclidean norm,
and if circular arcs are allowed as features. Even without appealing to a more
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general theory of wire routing, we can show that the design routability theorem
holds also for curvilinear wiring norms, provided that fringes remain polygonal.
Hence the sketch routability theorem admits the same generalization. The trick we
use involves approximating the curvilinear norm by a polygonal norm. It thereby
allows us to apply Algorithm R to sketches with curvilinear wiring norms, although
its performance declines and it cannot quite minimize wire lengths.

Section IOC steps farther out and considers some major extensions of the sketch
model and the sketch problems. These include: allowing the terminals of a trace
to merge or pass through one another during compaction; allowing terminals to
be line segments or convex polygons as well as points; and allowing traces to have
more than two terminals. My conclusion is that although the extensions seem to be
possible, the sketch model is not well suited to them, particularly the addition of
extended terminals and multiterminal nets. In Section 10D I propose a new model
of wiring that incorporates extended terminals and multiterminal nets in an elegant
way. I then discuss the prospects for adapting my theory of single-layer wire routing

and its attendant algorithms to the new model.

Development of the sketch model

Before describing various generalizations of sketches, I should explain some of
the reasons why the sketch model has the properties it does. My advisor Prof.
Leiserson and I originated the sketch model as a generalization of the grid-based
wiring model used Leiserson and Pinter [22] and many others. We wished to con-
sider wiring rules more general than grid models, and so we quickly abandoned
the common convention that terminals are points on the boundaries of modules.
Instead we decided to separate terminals from the modules they helped intercon-
nect. The reason was to avoid introducing spurious cuts that might falsely indicate
unroutability; see Figure 10-1 for an example. The desire for a clean routability
theorem was the major motivation for most of my decisions concerning the sketch
model.

Figure 10-1. Terminals are not points on
other features. If they were, some cuts in a

.... ....... . routable sketch could be both nonempty and
....... ...... unsafe. Here the traces have width equal to

the distance between adjacent dotted lines,
. .and the unit polygon is square. The striped

cut has a congestion of 5 but a capacity of
..... _..._._ ........... only 4.5. Yet the traces can be routed.
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.1 %Figure 10-2. Wires cannot be wider thanI a II = 1 their terminals. This example shows why:111311 = 1 the sketch is unroutable, as the bent cut x is

! ., I x g < unsafe and nonempty. All the straight cuts,

13/ however, including a and [, are safe.

Another peculiarity of sketches is their requirement that each trace be no wider
than its terminals. Others have made such an assumption to simplify design-rule
checking [37). My reason comes from the the sketch routability theorem. If the
requirement were removed, this theorem would be false. Figure 10-2 shows the
counterexample. The breakdown in the proof can be traced to Lemma 4f.3, which
shows that the capacity of a major cut is no less than the capacity of its elastic
chain. This lemma is used to prove Corollary 4f.5: that a safe sketch, whose major
straight cuts are safe, has no unsafe, major, bent cuts. In Figure 10-2 this claim
fails: the bent cut is unsafe, but the links of its elastic chain are safe. The reason
is that in going from the bent cut to its elastic chain, the flow has decreased by
the width of the wire, but the capacity has only decreased by the width of the its
terminal, which in this example is smaller.

Self-avoidance

Perhaps the most puzzling aspect of the sketch and design models is the require-
ment that wires be self-avoiding. I am frequently asked why this condition exists,
and whether for practical purposes it could be ignored. Unfortunately there are
good reasons for being concerned with self-avoidance. The question is nevertheless
a good one, because it seems that whenever a wire fails to be self-avoiding, a sim-
ple change to the topology would remove the offending loop of wire, improving the

routing and avoiding design-rule violations. This hope is dashed by examples like
Figure 10-3, which shows that two parts of a wire can approach too closely in a gap
that is too narrow for the wire to be routed through. Programmers of computer-
aided design tools have assured me that such situations should not be assumed to
be absent in practical designs.

The first reason to require self-avoidance of wires is that the sketch and routing
theorems depend upon it. Without it, the sketch of Figure 10-3 would be proper
without being safe. A possible escape from this dilemma is to redefine the flow across

a cut so that consecutive necessary crossings of a cut by the same wire contribute
only one wire's thickness to the congestion. In order for this approach to work,
one would have to allow wires to intersect themselves. Such a change would almost
certainly cause more problems than it solved.
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Figure 10-3. Rerouting cannot ensure self-
avoidance. All elements have width 1, the
unit polygon is square, and the distance be-
tween adjacent dots is 1/3. The sketch in (a)

1 " "is improper because its trace fails to self-
avoid; the striped cut has congestion 2 but
capacity 5/3. Changing the topology to (b)

(a) (b) does not help; the striped cut has conges-
(a)__ (b)tion 1 but capacity 1/3.

In any case, there are eminently practical reasons to insist that wires be self-
avoiding. One can make a case for an even stronger condition. Let us call a wire
strongly self-avoiding if the union of its territory with those of its terminals does
not separate the plane into two or more components. (Ordinary self-avoidance
requires only that this union not separate one island of the sketch from another.)
An equivalent definition is that a wire is strongly self-avoiding if its extent is simply
connected. If a wire is not strongly self-avoiding, then two parts of the wire violate
the design rule concerning wire-to-wire separation. This raises the possibility that a
short between these parts would form a loop in the layout, which (I am told) could
function as an unwanted antenna; or that while the wires are being laid down,
the thin piece of resist between the nearby wire parts could break off and foul the
circuit. For these reasons, some self-avoicance condition must be imposed on wires,
and possibly on routing obstacles as well.

The property on which my definition of self-avoidance is based, namely divisive-
ness of design articles, has the benefit that it can be tested by looking at nondegen-
erate straight cuts. (See Lemmas 5e.4 and 6a.2.) In contrast, there is no natural set
of cuts whose safety determines whether the extent of an article separates the plane.
Another benefit of my definition is that the self-avoidance of ideal embeddings of
wires and ideal realizations of traces is relatively easy to verify. Ideal embeddings
and ideal realizations are strongly self-avoiding, but the proof is fairly difficult.

10A. Representation Issues

As it stands, the sketch model is not very close to the models that circuit design-
ers actually use. Although grid models, which the sketch model subsumes, are
acceptable for channel routing problems, they are poorly suited for representing
transistors, the primary components of integrated circuits other than wires. Prob-
lems arise when trying to map the geometric design rules onto the sketch model.
Usually the rules are separation constraints and overlap constraints among regions
on various circuit layers. Some of the regions have no natural counterparts in the
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sketch model, and some regions must be represented as a set of sketch elements if
that region needs to connect to wires. Nevertheless, with suitable extensions to the
sketch model described here and in later sections, one can obtain approximations
of real design rules. Though sketches cannot adequately represent most transistor
structures, they can probably handle the interconnection of larger modules.

Convolution of regions

The rules governing proper sketches and designs are stated in terms of a global
wiring norm. This approach has the virtue of simplicity, but it grew out of a more
basic and more flexible view of geometric design rules, which I now describe. It
begins with the assumption that wires, at least, are to be represented as paths,
rather than regions of positive area, in order to define homotopy relations among
wires. Hence we must relate the abstract wire, which we think of as a path or its
image, to the region that the wire is to occupy in the circuit. We must also convert
the design rules among these regions to design rules among the abstract wires.

boo* A natural approach is to define the regions that wires occupy, and the regions
that they are forbidden to occupy, using the operation of convolution. For the
purposes of this section, a region is a subset of the plane R'. The convolution of
two regions A and B, which I denote A + B, is the set of all vector sums of points

in A with points in B, namely,

A+B= {a+b:aEA, bEB).

We consider wires whose shape can be described as the convolution of a centerline,
call it C, with a region W that contains the origin 0, as shown in figure 10a-1.
The region C + W occupied by the wire can be obtained by sweeping the brush W
along the centerline C, keeping the origin of W on C. The required separation
between wires may also be described using convolution. If R1 and R2 are the
regions occupied by two wires, there may be a region S 12 such that R, and R2 are
sufficiently separated if and only if R, + S12 does not intersect R 2 . This kind of
design rule is quite general. Each wire can have a different brush, and each pair of
wires can have a different region defining their required separation. Self-avoidance
can also be described using convolution; there may be regions S11 and S22 such that
R + S 1 and R2 + S22 are not allowed to divide the plane.

The convolution conditions become somewhat simpler if we assume that the
em regions I,. and S,, have inversion symmetry. If B is any region, we define the

set -B to be { -b : b E B}. Suppose W = -Wj and Sj = -Si. for all i andj.
Then the conditions

((C 1+WO)+S, 2)fn(C 2 +W 2)= and (C,+W,) n((C2 +W 2)+S 12)=e
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C2+w2  ZC2  Fl Figure loa-1. Examples of convolution.
111W2 The small circle inside each of the regions

W1 , W3, and S12 marks the location of the
C I+WI •  origin. We take these regions to be open so

(9 s12 that the convolved regions are open.

[S12

are equivalent, and are also equivalent to the condition

(Ci+T12) nC 2 =0 where T 12 =W 1 +S 12 +W 2.

(Note that convolution is associative and commutative.) So the brushes Wi and
separation regions Sj may be discarded in favor of the regions Tj.

One can take the convolution idea a step further and consider the constraints
that arise among the wires crossing a cut in a sketch. Let jq be a cut between two
obstacles P and Q, which for simplicity we consider to be points. As we saw in
Chapter 8, there is a definite sequence of traces that must cross W; they have a
definite ordering from P to Q. Let C1, ... , C, denote the centerlines (i.e., images)
of these traces, and put Co = P and C,+1 = Q. For 1 < i < n, let T be the region
defining the required separation between Ci and Ci+. If the ith and (i+l)st traces
are the same, then T determines the self-avoidance requirement for that trace. The
centerline of the first trace must satisfy (P + To) n C, = 0. Assuming that the
sets T are well behaved (they should be simply connected and should contain the
origin), the closest C1 can come to P is the edge of the region P + To. Similarly,
even if C1 wraps tightly around P + To, the closest the second centerline C2 can
come to P is the edge of P + To + T1. (This conclusion is accurate only if P does
not interact with C2 through C1.) Thus the ith centerline Ci is forbidden to enter
the region P + To + .". + T-1. This region is a barrier for Cj in the sense of (491.
The cut P is safe if and only if the following condition holds:

(P + To+ T, +...+ T) n Q = @. (10-1)

One could probably build a theory of single-layer wire routing on this basis. I
have chosen a simpler foundation to avoid making the proofs of the routability and
routing theorems any more difficult than they already are.

Relation to wiring norms

Under certain common conditions the design rules defined via convolution can
also be derived from a wiring norm. The basic requirement is that all the regions
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Q Figure lOa-2. Barriers as convolved re-
P+T0 +TI+T 2  gions. Here there are three necessary cross-

ings of the cut from P to Q, and for each
crossing there is a barrier around P. The

P+T0 +T1  minimum separation between wires is de-
termined by convolving with a nonconvex

S+opolygonal region To = T, = T7. This
approach can be used to model the rout-
ing of unit-width wires in a quarter-integer

T, defining the separations between cen!ifG12]be multiples of a convex, open,
symmetric region T. If T is a region and r > 0, let rT denote the dilation of T
by the factor r: the region { r • x : x E T }. If T is convex, open, nonempty, and

T = -T, then we can define a norm I -liT by

ll1T = inf{ r > 0: X E rT}.

This norm has the property that rT is the region { X E R 2 : 1IIXlT < r }. As a
consequence, the convolution rT + sT equals (r + s)T. If we suppose that each
region T, has the form riT, then the condition (C + T1 ) fl C2 = 0 is equivalent to

the condition 11C, - C211T >- rl. (The quantity hC1 - C2IT equals the infimum of
1IlX1T over all x in the convolution C - C2 .) Condition (10-1) above is equivalent
to liP - QIIT o ri. If every centerline Ci of a trace or obstacle can be assigned
a width wi such that the required separation T,, between Ci and Ci is 1(wi + wj)T,
then we are back to the sketch and design models, with H1"iT as our wiring norm.
The width of an element accounts not just for the size of its brush, but also for its
required separation from other elements.

Only rarely will the use of a fixed wiring norm be too restrictive. Ideally the
design rules would all be isotropic, and the design system would take full advan-
tage of them by permitting circular arcs in centerlines and drawing components
with circular brushes. In this case the wiring norm would be the euclidean norm.
(Curvilinear wiring norms will be discussed in the next section.) But usually, for
simplicity of programming and compatibility with manufacturing equipment, the
design system deals only with polygonal regions, or only with rectangles. In this
case the brushes and separation regions will all be multiples of a standard polygonal
region, typically a square or an octagon, and the polygon bounding this region will
be the unit polygon of the wiring norm.

But there is a problem in stipulating that the minimum separation between two
components be purely a function of their widths. Consider a typical MOS technology
that represents transistor gates by overlapping regions of diffusion and polysilicon.

Although diffusion and polysilicon are usually thought of as different layers on the
chip, for the purposes of routing they must be combined, since wires of the two
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materials must not cross except where a transistor is to be placed. The minimum
separation requirements between two polysilicon regions, between polysilicon and
diffusion, and between two diffusion regions may all differ. Any design rule that
was blind to differences between materials would have Lo be very conservative.

Components of differing materials

To treat the possibility that different components are made of different materials,
the sketch model must be generalized. Instead of assigning each element a fixed
width, a sketch will include a matrix of minimum distance constraints among the
elements of the sketch. Let us denote the required separation between elements i
and j by s(i,j). We assume that for all i, j, and k we have s(i,j) > 0 (positivity),
.s(i,j) = a(j, i) (symmetry), and s(i, k) :_ s(i,j) + s(j, k) (the triangle inequality).
No longer will each trace and island have a fixed territory. Instead two distinct
elements i and j of a sketch will be considered properly separated if the distance
between them (in the wiring norm) is at least 9(i,j), or if one is a terminal of the
other. Similarly, the trace i will be considered self-avoiding if the set of points
lying 1.(i, i) units or more from that trace has only one component that contains
features. As before, a sketch is proper if its elements are properly separated and
its traces are self-avoiding. We used to insist that the terminals of a trace have
the same width, and that this width equal or exceed the width of the trace. This
demand translates into the following: for each trace k with terminals i and j, we
have for each element I the relations a(i, 1) = .(j, 1) > s(k, 1).

Some definitions concerning cuts must change also. The capacity of a cut will
no longer account for the widths of its endpoints, since the contributions of those
endpoints are uncertain. Instead we put the capacity oi a cut equal to its arc length
in the wiring norm. The congestion of a cut will now depend upon the sequence of
traces that necessarily cross the cut. Let the endpoints of the cut lie on elements
number eo and e.+,, and suppose that the content of the cut is (el, ... , e,. ). Then
the congestion of the cut is defined to be o(ele,+1). The cut is considered
empty if n = 0 and e0 = el, and safe if its congestion does not exceed its capacity.

I conjecture that if these changes are made to the sketch model, then the sketch
routability and routing theorems continue to hold. There is strong support for this
claim, I believe, from an observation concerning the proofs of the design routability
and routing theorems. The key results concerning flow (Proposition 4d.2, Propo-
sition 4f.1, Lemmas 5c.2 and 5d.2, and Proposition 6a.3) can all be reformulated
in terms of content rather than flow. In other words, they never rely on the flow
across a cut (in the usual design model) being independent of the ordering of the
necessary crossings of that cut. To prove the conjecture, one would probably have
to extend the design model by making changes corresponding to those I have sug-
gested for the sketch model, and repeat the development of Chapters 4 through 8.
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(Some aspects of the design model that have no counterparts in the sketch model,
such as the definition of the flow across a half-cut, would also need to change.) I
have not attempted to carry out this program, but I have little doubt that it would
eventually be successful.

If the design routing and routability theorems remain correct, then Algorithms
T and R can be generalized to the new model. The required changes are simple
and do not affect the worst-case performance bounds. In essence, one replaces the
summing of element widths by the summing of element-to-element spacings. This
replacement occurs in four places: in the construction of doorways by Algorithm R;
in the determination of cable widths in the condensed RBE; in the data structure of
Algorithm T that contains trace segments (which we called WS); and in the main
loop of Algorithm F. Each cable in the condensed RBE must store, in addition to
its width, the identities of the strands at the left and right edges of that cable,
so that Algorithm T may compute the proper spacing between the strands of this
cable and those of another. Processing this information still takes only constant
time per cable. Likewise, the preprocessing for Algorithm F, which normally stores
the lengths of the shortest paths between various nodes in the adjacency graph,
must also keep track of the first and last traces along those shortest paths.

Nonlocal constraints

A further extension would remove the assumption that the minimum separa-
tions s(i,j) satisfy the triangle inequality. Such an extension may be necessary
for handling complementary MOS technologies, in which there are large separation
constraints between n-type and p-type transistors, far larger than the typical spac-
ing between wires. Such nonlocal interactions probably cannot be handled at all
if they involve traces. But if they involve only fixed devices, represented by is-
lands, then one can divorce the question of whether devices are properly separated
from the issue of routability. One would simply precede one's routability test by a
straightforward test, taking perhaps 0(n 2) time, to ensure that each pair of features
satisfies its minimum separation requirement. Routing would not be affected.

Representing devices in a sketch

A method of handling traces and features of differing materials would remove the
major hindrance to accurate representation of integrated circuit layers by sketches.
(In contrast, printed circuit board layers are much simpler, and the sketch model
as given in Section 1A is probably adequate to describe them.) In what follows I
assume that such a method is available.

By far the most common devices in an integrated circuit are contact cuts and
transistors. On any particular layer, a contact cut is nothing more than a convex

- 308 -

04



Section 10A Representation Issues

region to which a wire may connect. This region is typically circular or square,
depending on the wiring rules in effect, and in general it may be given the shape
of the unit polygon (or circle) of the wiring norm. Thus it can be represented as
a pointlike feature. Typically its width is greater than that of the attached wire;
this is permitted by the sketch model. Some contacts, like the "buried" contacts in
MOS technologies, connect two wires on the same routing layer. Like transistors,
these must be represented as multiterminal devices.

.~.;4.4..4..... 4. *444Figure 10a-3. Representing transistors.
......-....... .." At left, two polysilicon wires (dark shad-

ing) cross a diffusion wire (light shading)
4-4- 4-4-4-4 ... to form typical enchancement mode transis-

------ tors. The situation can be represented in.... ...- .---i--i ..-..-.----
.. .-.." -..-. : a sketch using four features per transistor:

, two of type diffusion and two of type polysil-
.. + I I'' : icon. This example uses Mead/Conway de-. . .......... i. '44 " ..." sign rules [31] with A equal to the grid spac-

ing.

Transistors are built out of sets of features. A transistor is usually a three-
terminal or four-terminal device, and so its representation must include at least
three or four pointlike features to which traces can connect. In many systems the
gate of a transistor can be determined implicitly by the crossover between polysilicon
and diffusion wires, but since sketches prohibit crossings between wires on the same
layer, such an approach is ruled out. Hence the sketch may need additional features
to occuF:,, the active area of the device, and prevent any other traces and features
from approaching too closely. Finally, the transistor structure must be internally
consistent; its islands must be properly separated. Figure 10a-3 shows how the
simplest kind of transistor might be represented.

Unfortunately, transistor structures involving butting contacts, implantation re-
gions, and so on are much harder to represent in sketches. To avoid design rule errors
one is forced into a very conservative representation. Moreover, because terminals
are points, the transistor structures are relatively inflexible. During compaction one
probably cannot allow movement of the connection points relative to one another,
even when such movement might be desirable; all the islands forming the transis-
tor should be placed in the same module. Some flexibility can be regained using
extended terminals, however; see Section loC.

Terminal merging

So .e representations of devices work well in the presence of wiring alone, but
less well in combination with one another. The reason is that two devices may
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sometimes approach more closely than their representations would indicate. For
example, the two transistors in the left-hand panel of Figure lOa-3(a) are farther
apart than necessary, but their terminals in the right-hand panel are too close.
Figure 4 in the Introduction contains many other examples of modules overlapping.
One would like to permit such overlaps, since they actually violate no design rules,
but the sketch model prohibits it. The culprit is the requirement that the terminals
of a trace have disjoint territories. If we remove this restriction, and allow the
territories of each trace's terminals to merge, then we can route circuits like those .

depicted in the Introduction, without invoking special-purpose representations for
groups of devices. I call this process terminal merging, because if we take the
idea to its natural conclusion, it allows the terminals of a trace to coalesce during
compaction.

We already have most of the machinery needed for terminal merging. By default&
the design model allows the terminals of a wire to be arbitrarily close, provided that
the wire remains self-avoiding. In fact, when we began translating the results of the
design model, in Chapter 7, we had to make special allowance for this difference
between sketches and designs. We could just as well change the sketch model to
permit terminal merging. This change would have only one major drawback: a
complication of Algorithm C, the sketch compaction algorithm, and its proof of
correctness. We discuss this issue further in Section 10C.

For now let us consider how terminal merging would affect routing and routabil-
ity testing. As noted in Section 6C, whether terminals are permitted to approach
one another has no affect on the ideal embedding of a design, and consequently

* it does not affect the ideal realizations of a sketch either. Thus Algorithm R Is
indifferent to terminal merging. Algorithm T, on the other ha.ad, would have to
avoid checking the degenerate cuts-those which correspond to degenerate cuts in
a design. As it turns out, the only straight, degenerate cuts that are not also empty
are straight cuts that coincide with rubber bands. Hence Algorithm T can be easily
modified to permit terminal merging.

10B. Wiring Rules and Wiring Norms

In this section we consider four different wiring rules that may be attached to the
sketch model. One asks that wires be composed of horizontal and vertical segments
only. The next is even more restrictive: it requires that the wires run in a grid. In
another the wiring norm is euclidean, or any other easily computable norm that is
not piecewise linear, and wires are allowed to contain curves as well as line segments.
The fourth is the same, but it also allows features to contain curved pieces. In each
case we examine the effects on the sketch routing and routability theorems, and on
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the performance of Algorithms T, R, and C. As usual, I shall characterize wiring

norms by the locus of points of norm 1, the unit polygon or unit circle of the norm.

Thus a piecewise linear norm is "polygonal", other norms are "curvilinear", and the
norm attached to the grid model is "rectilinear".

Restrictions on wire segments

Suppose we require that the traces in a proper sketch consist only of horizontal

and vertical segments. This requirement is necessary if the fabrication process
or the design system can handle only rectangles whose sides are aligned with the

coordinate axes. Let us assume, therefore, that all the line segments representing
the features in our sketches are horizontal and vertical also. The appropriate wiring

norm is rectilinear: define lJ(x,y)JJ to be max{IxJ, lyl}.
Under these assumptions the sketch routability theorem still holds, and the basic

sketch algorithms continue to work. Clearly it remains true that every unsafe sketch

is unroutable. For the converse, I present a method for transforming the ideal

realizations of the traces in a safe sketch, which may contain diagonal segments,

into realizations consisting of horizontal and vertical segments only. This rerouting
method appeared in an earlier paper with Leiserson on sketch routing [211, and ft

can be added as a postprocessing phase to Algorithm R with a loss in performance
of at most a constan* factor. Consequently the other sketch algorithms need not

be changed. Aside from using Algorithm R as a subroutine, Algorithm C relies

only on the sketch routability theorem and basic properties of the sketch model.
Algorithm T is likewise unaffected.

The sketch routing theorem, on the other hand, weakens s- mewhat. In general

there are many feasible realizations for a trace that consist of horizontal and vertical

segments and have minimal length under those conditions. In short, minimum-
length feasible realizations are no longer unique. But the traces in a safe sketch

still have minimum-length realizations that form a proper sketch. The modified
Algorithm R computes such minimum-length realizations.

The rerouting processIGiven the ideal realization of a sketch, the usual output of Algorithm R, we

reroute each trace downward onto its struts as shown in Figure lOb-1. Only one

trace 0 need be considered at a time. We first identify the joints of 0 that are
stationary. Recall from Section ID that an ideal trace is supported at each joint

by a strut, which is part of a diagonal cut. With a square wiring norm the diagonal
slopes are ±), and hence each strut points either upward or downward and either

leftward or rightward. A joint is stationary if either the strut supporting 0 there is
upward, or a segment ending at that joint is horizontal or vertical. The stationary
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joints divide 0 into flexible subpaths, each of which is either a single segment or a

chain of segments whose angles lie in the same quadrant: either all the segments
in the chain point upward and leftward, or they all point upward and rightward, et
cetera. (These facts follow from the results of Section 7D, because ideal traces are

1~.tracks.)

Figure lob-i. Routing a fiexible subpath
Z -onto its struts. The flexible subpath (grey)

is replaced by a rectilinear path (black).
Only the struts (striped lines) of a particu-
lar diagonal slope are considered: that with
opposite sign to the sign of the slopes of the

,,,- . segments in the subpath.* -. -- - .S- - .-Z

Each flexible subpath of 0 is rerouted downward onto certain of its upward
struts, keeping its endpoints fixed. A flexible subpath that contains only a single
horizontal or vertical segment may be left alone. Consider now a flexible subpath
whose segments all have positive slope. This subpath is to be rerouted onto struts
that point upward and leftward. Which struts are they? The endpoints of the
subpath, those that are not terminals, are supported by struts of slope -1. Hence
this subpath passes through a particular po, ",on of the corridor for 0 corresponding
to the diagonal slope -1. Consequently thei_ -s a well-defined sequence of struts of
slope -1 that constrain this flexible subpath tom below. If this flexible subpath
consisted instead of segments of negative slope, we would reroute it onto struts that
point upward and rightward in the same way.

Though I have no intention of providing any formal proofs in this chapter, it
should not be difficult to believe that this method works, and works efficiently.
First of all, there is no chance of changing the routing topology by moving a flex-
ible subpath across a feature, because any such feature would give rise to a strut
constraining that subpath. For the same reason, the new routings are actually
traces-intersecting no features except their terminals-and they also remain prop-
erly separated from all features other than their terminals. Second, the rerouting
causes no two flexible subpaths to collide. For suppose it did; suppose it pushed
an upper subpath downwards onto or through a lower subpath, as shown in Fig-

,S, ure lOb-2. By symmetry we may assume that the upper subpath originally consisted
of segments of negative slope. Then the lower subpath would have an upward, right-
ward strut that intersects the other subpath as well. But the feature that gives rise
to this strut also gives rise to a longer strut for the upper subpath. Hence the
upper subpath could not be rerouted down onto the lower one. (This argument
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is reminiscent of the proofs of Lemmas 5c.2 and 5c.3, and one could formalize it
by adapting those proof techniques.) Finally, the rerouting is efficient; it requires
only constant time per strut, and hence consumes no more time and space, up to
constant factors, than Algorithm R normally does.

Figure 10b-2. No flexible subpaths collide.
If one were somehow rerouted down through
another, it would cross a strut for the lower
one (striped path) that is part of a strut for
the upper one.

One last claim is that the traces output by the rerouting process are as short as
possible. This claim is harder to verify, because it depends on the unproven fact that
no feasible realization of a trace is shorter than its ideal realization in any norm.
Suppose we measure wire length with the taxicab or L' norm. The ideal realization
of a trace has minimum length in this norm among all feasible realizations of that
trace. Since the rerouting process does not affect arc length in the taxicab norm,
the rerouted traces are still optimal in this sense.

The grid model

From the model in which a proper sketch consists only of horizontal and vertical
segments, the grid model is but a short step away. Let R denote the real line and
Z the set of integers. The grid relevant to single-layer routing is the set { (x, y) E
R' : x E Z or y E Z } of points with at least one integer coordinate. The lines
it contains are called gridlines, and the points Z x Z where they intersect are
called gridpoints. The grid model for sketches makes the following assumptions: all
features in a sketch lie in the grid; all feature endpoints are gridpoints; the width
of each element in a sketch is an odd integer; and the wiring norm is the rectilinear
one. It mandates that a sketch is not proper unless each of its traces lies within the
grid.

Despite the additional restrictions imposed by the grid model, it need not be
treated any differently. The reason is that the rerouting stage of Algorithm R
still produces proper realizations. Because the width of every sketch element is an
odd integer, all the struts have integral length in the wiring norm, and so their
endpoints are gridpoints. Consequently the rerouted traces all lie in the grid. The
sketch routability theorem continues to hold, the sketch routing theorem holds in
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its weak form (trace lengths can be simultaneously minimized, but not uniquely),
and Algorithm T is unchanged.

Algorithm C continues to work because it never considers a nonintegral dis-
placement for any module. The additional restrictions on sketches could only cause
Algorithm C to err by producing an improper sketch as output. We show that
this event never happens. The congestions and capacities of all cuts, as well as the
coordinates of every feature endpoint, are integers. Hence in each constraint that
Algorithm C adds to its constraint system, the constant is an integer. Therefore
all paths through the constraint graph have integral length, and so the configu-
rations that Algorithm C computes involve integer dispacements only. Since the
input sketch is assumed to be routable, its features must lie in gridlines and their
endpoints on gridpoints. The same is true of the sketch that Algorithm C gives to
Algorithm R, and so the output of Algorithm C is proper.

Curvilinear models

Having gone nearly as far as possible in restricting the traces in a proper sketch,
from now on we consider allowing them some liberties that are lacking in the original
sketch model. The simplest of these is the ability to contain arcs as well as segments.
Such an ability is useless as long as features are line segments and the wiring norm is
polygonal, so we will consider relaxing both of these assumptions. First we assume
that the wiring norm is not polygonal.

Although we have no mechanism for dealing with curvilinear traces, there is
a trick that converts a curvilinear norm to a polygonal norm for the purpose of
routing. Using this trick we can prove that the sketch routability theorem holds
for any wiring norm. For the sake of simplicity we take the wiring norm to be the
euclidean norm, as there is probably no call for any other nonpolygonal norm.

Approximating the wiring norm

We construct the surrogate norm from the features in the sketch to be routed.
* Let S1 be the unit circle { x E R 2 : IxI = 1 }, and let A be a set that contains, for

each feature endpoint p and each feature Q having a cut to p, the line segment
from p to Q that minimizes Jq - pl. Let C be a convex polygon, symmetric about
the origin, which does not intersect the inside of S'. Suppose further that for each
line L through the origin that is parallel to a line segment in A, two sides of C are
tangent to S' at the intersections of S' with L. Such a polygon is easily created,
as shown in Figure lOb-3. Start with any symmetric, convex polygon whose inside
contains that of S'. Then for each segment A in A, intersect that polygon with
the two lines perpendicular to A and tangent to S', yielding either one or three
polygons; take the one that encloses the origin. The polygon C that results from
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this process is the unit polygon of a norm 1 defined as follows: for any point
x E R', the quantity [[xli is the number r > 0 such that x = rc form some c E C.
You may check that 11 - is in fact a norm. It is stronger, or more restrictive, than
the euclidean norm, in that lIxIl < lxi for all points x E R2. K

Figure 10b-3. Constructing the unit poly-
gon. The striped lines take the slopes of all

..... the critical cuts and all the line segments
that would be critical cuts if their middles

crossed no features. We circumscribe about
the unit circle S1 a polygon (dark lines) that

.......... ... ......... ....... is tangent to S' wherever these lines inter-
sect S1.

S1

The new polygonal norm has two key properties that allow it to substitute for
the wiring norm. The critical cuts of the sketch are the same in both norms, and
they have the same length in both norms. In each norm the critical cuts are those
cuts that begin at a feature endpoint p and travel to the closest point on another
feature Q, with ties broken using the euclidean norm. Hence it suffices to show
that if the point q E Q minimizes Iq - pl, then it also minimizes jjq - p11, and that
the two distances liq - pl and Iq - pi are equal. Let A E A be the line segment I-.
Let 0 be the circle { x : Ix - p = Iq - pl } centered at p and passing through q,
and let P be the polygon { x : lix - Pl = lq - pl }. By the construction of C, the
polygon P is tangent to O at q. Thus jjq - PIl = Iq - pl. If T is the line through q
perpendicular to A, then by the choice of q, the feature Q does not intersect the
side of T that contains p. Also T is tangent to 0 at q, and hence is also tangent
to P at q. Since P is convex, the only side of T it intersects is that containing p.
Hence no point of Q is closer to p than q in the norm 11 -1.

Now we can see why a sketch whose critical cuts are safe is still routable. Switch-
ing from the euclidean norm I-I to the polygonal norm 11-[1, the critical cuts do not
change, and neither do their lengths. Hence their capacities remain unchanged, as
do their flows, emptiness, and safety. Thus the sketch whose critical cuts are safe
in the norm I [ has the same property with respect to the norm 11. I, and hence
is routable in the norm 11 I1, by the sketch routability theorem. In other words,
our sketch has a realization that is proper with respect to the new wiring norm.
The unit polygon of the norm 11 - circumscribes the unit circle of the norm I [,
and hence every element of our sketch has larger extent in the former norm than
in the latter. (The polygonal norm is stronger.) Therefore, as in Lemma 8b.1,
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the realization that is proper in the polygonal norm is also proper in the euclidean
norm.

A similar argument proves the other direction of the sketch routability theorem
for the euclidean wiring norm. Given a sketch containing an unsafe, nonempty,
straight cut A, critical or not, one can construct a weaker polygonal norm in which
A remains unsafe. Let L be the line through the origin parallel to A, and let P
and Q be the islands containing the endpoints of A. It suffices to inscribe a convex,
symmetric polygon C in S' whose intersections ±x with L satisfy

flow(A) > L - width(P)/2 - width(Q)/2.

This condition ensures that in the norm whose unit polygon is C, the cut A remains
unsafe. Hence by Proposition 8b.3, our sketch is unroutable in the new polygonal
norm. Since this norm is weaker than the euclidean norm, meaning that it gives rise
to smaller extents for sketch elements, any sketch that is proper in the euclidean
norm is also proper in the polygonal norm. Consequently our sketch is unroutable
in the euclidean norm also.

Because the sketch routability theorem carries over to curvilinear wiring norms,
so do Algorithms T and C. The sketch routing algorithm, however, fares less well.
The trick of replacing the wiring norm by a polygonal norm is computationally
effective, but the complexity of the resulting norm slows down the routing process
greatly. The time and space complexity of Algorithm R are both proportional to
the number of diagonal slopes, which can be up to e(n 2 ) if most features are visible
from most other features. Hence Algorithm R could use up to 0(n 4 log n) time and
0(n 4 ) space trying to route with the euclidean norm, and the result would not even
minimize wire length.

Other approaches to curvilinear wires

A better approach to the routing problem is needed if routing with a euclidean
* metric is to be practical. Storb et al. [33j have recently developed a routing al-

gorithm for sketches in the euclidean metric that combines the ideas of scanning
over the rubber-band equivalent with the barrier construction methods of (52]. In
a sense, their algorithm routes wires in the simply connected covering space of the
routing region. It runs in time O(IF12 ITI) on a sketch (F, T). Another approach is
to use relaxation starting from the rubber-band equivalent, inflating wires to their
full width one at a time, moving other wires out of the way, and keeping all the
wires tight. This approach seems to work well in practice [36], especially if per-
formed incrementally as the sketch is being input. The worst-case running time of
this method is as yet unknown.
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We conclude that the problem of finding a nearly optimal algorithm for sketch
routing in a curvilinear wiring norm is still open. (Perhaps the best idea is to drop
the euclidean norm in favor of some reasonable, prespecified polygonal approxima-
tion.) My theorems of single-layer routing probably do extend to arbitrary wiring
norms and quite general feature shapes, however, as I now discuss.

Arcs in traces and features

Any statements I make concerning single-layer routing with nonpolygonal wires
and features must be somewhat speculative. The only way to justify them on
the basis of present knowledge about sketches would involve a limiting argument
like that relating sketches to designs. As we know, such arguments are extremely
tedious. Another approach, which is perhaps no shorter but requires no new ideas,
is to strengthen the existing theory, replacing 'piecewise linear' with 'piecewise
smooth' or some intermediate condition. In my view, nothing but a heap of technical
detail stands in the way of this improvement, but those readers who are less than
intimately familiar with Chapters 2 through 9 may not share my confidence. So the
generalizations that I am about to propose must be taken as conjectures.

The design routability and routing theorems hold under any wiring norm, pro-
vided that wires are permitted to include canonical paths in sets of the form
{ x : JJx - FJ = c}, where F is a fringe and c > 0 is a constant. The same is
true even if fringes are the images of arbitrary piecewise smooth loops. (As be-
fore, the inside of each terminal must be a convex set.) This claim is really more
general and less obvious than necessary. One important special case may be easier
to swallow: the design routability and routing theorems are true in the euclidean
wiring norm if wires and fringes can contain circular arcs of arbitrary radii. These
conjectures have counterparts in the sketch model as well. In particular, I claim
that the sketch routability and routing theorems are true in the euclidean wiring
norm if features and trace segments can be circular arcs.

The sketch algorithms fare more poorly than the theorems when the sketch
model is generalized. As we know, the sketch routing algorithm is unable to op-
erate with curved elements. Algorithm R is grounded in the idea of building ideal
realizations out of partial realizations. When the wiring norm is not polygonal, this
idea cannot be applied, except by approximating the wiring norm.

At least while features remain straight, critical cuts can still be identified. Hence
Algorithm T continues to work, as does Algorithm C, at least until the point where
the output sketch needs to be routed. When features are not straight, however,
the critical cuts as currently defined need not be decisive. Proposition 8b.4, which
shows for the standard sketch model that the exposed critical cuts are decisive,
relies on features being convex. The decisiveness of critical cuts may be salvaged if
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every curved feature is part of an island which has an inside and an outside, only
one of which contains traces, and the curved feature bulges toward that side. In
this case one can push Proposition 8b.4 through. Otherwise one must find a new
set of decisive cuts using the methods of Section 6D. What's worse, the the rubber-
band equivalent of a sketch is harder to compute when features are not straight,
because Algorithm W no longer applies. Fortunately, one can always fall back to
Algorithm F of Section 9B for computing congestion. That algorithm, while slower,
is independent of the shapes of features and traces.

10C. The Terminals of Traces

In this section we consider more radical changes to the sketch model than merely
altering the definition of what sketches are proper. The changes have two purposes:
to allow sketches to represent wiring problems that they previously could not; and
to give our sketch algorithms more freedom, so that they may find better and more
compact realizations of the sketches given to them. Three extensions of the sketch
problems come to mind. One, which was discussed briefly in Section 1OA, allows
the terminals of a trace to merge during compaction. Another allows terminals to
be line segments or convex polygons, and allows trace endpoints to move along the
boundaries of these extended terminals. The third attempts to remedy the most
glaring defect in the sketch model by providing for multiterminal nets: wires that
connect to three or more terminals.

All these extensions can, I believe, be incorporated into the sketch model, at the
expense of complicating the sketch algorithms and their proofs of correctness. To
justify terminal merging and the addition of extended terminals is not too difficult,
since these ingredients are already present in the design model. It involves two
things: rederiving the correspondence between sketches and designs, and upgrad-
ing the sketch algorithms. To add multiterminal nets is extremely hard, however,
because it requires a major extension of the design model. In fact, my only reason
for thinking that the design model can accommodate multiterminal nets is a strong
faith in the proof techniques of Chapters 3 through 7, which have shown themselves
in the course of my research to be remarkably adaptable. The main problem is to

find the right definitions.

Merging terminals during compaction

Terminal merging was discussed briefly at the end of Section 1OA. It begins with
the notion that the terminals of each trace in a sketch should not be artificially
kept apart; their extents should be allowed to overlap in a proper sketch. We saw
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how to modify Algorithm T to test routability in the new sense: it must ignore all
degenerate critical cuts. For if the extents of terminals may overlap, then the sketch
routability theorem must be changed to read: A sketch is routable if and only if
its nonempty, nondegenerate, critical cuts are safe. The definition of degeneracy
here corresponds to that in the design model, and may be stated as follows. A

bridge 0 in a sketch S is degenerate if there is a piecewise linear homotopy B such r -

that B(.,0) = 3, for all t E (0,1) the path B(.,t) is a bridge in S, and B(.,1) is
a path in an obstacle of S or in the image of a trace of S and its terminals.

If these changes are adopted, then Algorithm C breaks down in two ways. First,
if we retain the provision in the sketch compaction problem that prevents the sketch
topology from changing, then the set of acceptable configurations can no longer be
represented in as constraint graph. For if some two terminals in different modules
can approach arbitrarily closely but cannot coincide, then the set of configurations
that represent routable sketches is not closed. Second, protection of the critical
cuts is no longer necessary for routability, because a unprotected critical cut can
be degenerate and therefore irrelevant. Unlike some changes to the sketch model,
this one cannot be accommodated by finding a new sequence of potential cuts with
the routability, convexity, ordering, and boundary properties. The problem is that
the sketch routability theorem, normally used to justify the routability property,
has changed significantly. Fortunately, both breakdowns can be repaired in fairly
obvious ways.

We solve the first problem by redefining the configuration space so that the
terminals of each trace can merge or even cross over one another. This sort of topo-
logical change damages only a small part of the correctness proof of Algorithm C:
the claim that the sketches corresponding to different configurations are homeomor-
phic. We used this claim in Corollary 9d.2 to prove that the adjacency graph of
the sketch is independent of configuration, and thus a single adjacency graph could
be used for computing flows in all relevant configurations. In fact Algorithm F still
computes flow correctly, even when one terminal of a trace passes through the other.
For as far as flow is concerned, one may pretend that the first terminal passed above
or below the second terminal by a tiny distance.

The second problem may be addressed by changing the definition of protection
and reworking the proofs in Sections 9E and 9F. Recall that a configuration d
protects a potential cut 0 unless 0(d) is an unsafe, nonempty cut. Under the new
definition d protects 0 unless tk(d) is an unsafe, nonempty, nondegenerate cut. The
nondegeneracy condition causes no more trouble than the nonemptiness condition;
its presence is felt only in Lemma 9e.3.

Only one major change is needed in Algorithm C. All potential cuts must be
tested for degeneracy, including the horizontal ones that define the inibiad constraint
set. A straight cut between different modules, which is the only kind Algorithm C
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ever considers, is degenerate if and only if its trace code matches that of a trace
between the same features as the cut. Since there is at most one trace between those
features, the test for degeneracy is quick, at least compared to the computation of
flow that precedes it. The other change is minor: when preparing the output sketch
for routing, Algorithm C should eliminate all traces whose terminals coincide.

Extended terminals

The trouble with sketches is that their features have empty interior. Conse-
quently our proof techniques, which rely heavily on lifting to a covering space, do
not apply directly to sketches. All the theorems concerning sketches must be derived
from corresponding theorems about designs. But what is a drawback in proving the-
orems is a virtue in designing algorithms: if all terminals are points, one never need
worry where to place the endpoint of a trace. Wten we relax the restriction that
terminals be points, we immediately face several problems in the construction and
use of the rubber-band equivalent, and in routing, concerning the placement of trace
endpoints. These are the same problems we sidestepped in Chapter 7. Everything
I say about routing and testing routability in the presence of extended terminals
applies equally well to the design model.

Any convex island in a sketch may be an extended terminal, provided that its
trace contacts it from the outside. Thus terminals can be points, line segments, and
convex polygons. The restrictions on extended terminals arise because the terminals
of a wire in a design are convex, inner fringes.

Because extended terminals are an integral part of the design model, the cor-
respondence between sketches and designs can easily admit them. A realization of
a trace is any bridge-homotopic trace, and so one may move the endpoints of a
trace along their respective terminals. Thus the notion of homotopy for traces is in
line with that for wires. The sketch routability and routing theorems go through
essentially as in Chapter 8, which is to say, with either a lot of handwaving or a
lot of hard work. (Note: I have not actually done the hard work, so there is some
chance that the extension contains a fatal flaw.) One difference is that the ideal
realization of a trace is no longer necessarily unique.

Routing is also more difficult when extended terminals are present, due to the
need to locate trace endpoints. I expect, however, that the following approach can
be made to work. As in Algorithm R one first computes for every trace a corridor
for each diagonal slope. But now these corridors should include doorways that pass

O- right through the trace's terminals. The partial realizations of the trace are now
the shortest paths through these corridors from one terminal to the other. Because
terminals are convex, the partial realizations should not be too difficult to compute.
Now one merges the partial realizations as before, with some minor extensions to
determine from which partial realizations the ideal realization takes its endpoints.
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Detecting trivial crossings

The other things that must change when extended terminals are present are

the algorithms for computing congestion and necessary crossings. In particular,

the rubber-band equivalent of a sketch must be treated somewhat differently. As
explained in Section 7C, every crossing between a straight cut and a rubber band

is either necessary or trivial. Informally speaking, a crossing is trivial if one of its

corresponding half-cuts is homotopic to a path in a single island. See Figure lOc-1.
The trivial crossings used only to occur at trace endpoints, but that is no longer true.
Hence the RBE itself can no longer identify the trivial crossings; some additional
computation is needed.

q Figure l0c-1. Trivial crossings. The
crossing at r between the cut -q and the

r . . grey trace is trivial if and only if one of the

X regions X and Y is empty of features. If the
cut and trace shared only one terminal, one r

.... of these regions would be absent.J p

Fortunately, we have considerable freedom in choosing where on its terminals a
rubber band should begin and end. Technically, the rubber band for a trace is the
shortest path through a certain corridor that begins and ends at the endpoints of
the trace. But we may replace the rubber band of a trace by the rubber band of any
route for that trace without affecting the content of 1ny cut. For starters we choose
each rubber band so that neither its first nor its last segment lies within a terminal.
Under this condition only the first and last crossings of a cut can be trivial.

A crossing may be tested for triviality as follows. For e,-rh terminal shared by
the cut and the rubber band, consider the loop formed I - he terminal and the
portions of the cut and rubber band between the terminal and the crossing. If the
inside of this loop is free of features, then the crossing is trivial. But if every such
loop encloses a feature, then the crossing is nontrivial, and therefore necessary. If
the trace and the terminal share no terminals, then nontriviality is automatic.

Testing whether a loop encloses some feature is generally difficult, but can be
simplified by a judicious choice of rubber bands. We say that a rubber band p for a
trace 0 is stiff if no subpath of p that is not straight can be replaced by a straight
path to yield the rubber band of a route for 0. Every trace has some route whose
rubber band is stiff, because one can keep eliminating joints of the rubber band
until no further subpath can be straightened. For a crossing of a cut by a stiff
rubber band p to be trivial, it must occur in the first or last segment of p; otherwise
one could straighten out a subpath of p. Hence if stiff rubber bands are used, the
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loops we must test are essentially triangles. One can then apply any of the various
retrieval or counting algorithms for triangles [7, 56] to test triviality of crossings.
Good average-case performance, say O(log n) or O(log 2 n) per search, can probably
be achieved with a quadtree structure.

Stiff rubber bands may be computed according to the following outline. One
first uses Algorithm W to compute the "envelope" of the rubber bands of routes
of a given trace, as shown in Figure lOc-2(a). The left-hand boundary is a rubber
band that begins so far counterclockwise on the first terminal that its first segment
lies on that terminal, and ends so far clockwise on the second terminal that its
last segment lies on that terminal. The right-hand boundary"is similar. If the two
boundaries of this envelope do not intersect, then a straight. rubber band exists. If
they do intersect, then they intersect along a path that forms part of the middle of
the desired rubber band. This path need only be augmented by straight paths from
the first terminal and to the last terminal. If possible, these straight paths should
be collinear with the segments to which they attach. See Figure 10c-2(b). I omit
the details because I believe there are better ways of computing necessary crossings
and congestion in the presence of extended terminals. One candidate method is
mentioned in the following section.

(a) (b)

Figure 10c-2. The envelope for a rubber band. In (a) the boundaries are sep-
arate, and the desired rubber band (grey) is straight. In (b) the two boundaries
intersect in the middle (black segments) of the stiff rubber band.

Algorithm F of Section 9B needs modifications along the same lines. Like the
RBE, Algorithm F essentially computes a minimal sequence of crossings of a cut,
and if the endpoints of that cut lie on extended terminals, then the first and last
crossings may be unnecessary, i.e., trivial. To test whether a crossing of a trace by
a cut is trivial, one looks at each extended terminal they share, and compares the
trace codes (gate lists) of the portions of the cut and trace from that terminal up
to the crossing. If they are equal, then the crossing is trivial. To incorporate this
test into the optimized version of Algorithm F is not trivial, but it can be done.

Multiterminal nets

Perhaps the most problematic weakness in the sketch model is its complete in-
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ability to represent wires with more than two terminals. I now present an extension
of the sketch model that may alleviate this problem. Of course, one can always
break a multiterminal wire into two-terminal wires by introducing connector mod-
ules (groups of terminals) along the way. But doing so defeats the purpose of having
flexible interconnections.

We may represent a multiterminal wire by a ring-shaped set of traces, as shown
in Figure lOc-3(a). I call this set of traces a net. The traces in a net can inter-
sect, and indeed they must intersect at their terminals unless extended terminals
are present. But no two traces in the net may make a necessary crossing, so Fig-
ure 10c-3(b) is ruled out; and the loop that the traces form must enclose no features.
Furthermore, the traces in a net must have the same width, as must the terminals
of the net, and the width of the traces may not exceed that of the terminals. To
route a net is to route each of its traces; the result is always a net. For technical
convenience we assume that two-terminal wires, as well as wires with more termi-
nals, are represented as nets. (A two-terminal net is just a pair of bridge-homotopic
traces.)

(a) (b) Figure l0c-3. Valid and invalid multiter-
minal nets. Part (a) shows a sketch with
nets in place of traces. Each net is a
loop, not necessarily simple, of traces (light
paths), no two of which cross over. The
paths in part (b) therefore do not form a
net.

A net need not represent the final form of a multiterminal wire. Instead, having
routed the nets in a sketch, one can then replace them by more conventional tree-
shaped wires. Each wire's centerline should be placed within the net and the points
it encloses. Unlike the traces of the net, however, this tree-shaped wire will not
generally have its total arc length minimized; to minimize it involves solving a

Steiner tree problem, which is NP-complete [13].
There are two fairly natural separation rules one might apply to nets, one stricter

and one looser. Both insist that in a proper sketch no trace may cross over another,
although two traces in the same net may coincide along part of their length. The
strict rule treats the traces in a net as independent entities, each with its own extent;
it says that a sketch is proper only if whenever two of its elements (traces and
islands) have overlapping extents, they are either a trace and one of its terminals,
or two traces that share a terminal. It further requires that each trace in a proper
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sketch be self-avoiding. The other is more akin to the rule for terminal merging; it
treats each net together with its terminals as a whole object. We define the extent of
a net to be the union of the extents of its traces and terminals. Under the loose rule
a sketch is proper only if the extents of its nets and obstacles (nonterminal islands)
are disjoint and its nets are self-avoiding, meaning that no net has an extent that
separates two islands of the sketch.

Unfortunately, only the strict rule is likely to give rise to a satisfactory routability
theorem, and so we adopt this one. Under the loose rule there is no satisfactory
definition of congestion. (Making sense of the loose rule requires allowing each trace
to pass over terminals in its net, which the present framework absolutely forbids.)
The conjunction of terminal merging and multiterminal nets must wait for the model
presented in Section 1OD. Under the strict rule, the congestion of a cut q may be
defined as the total width of the traces in the content of P after eliminating every
second trace wherever consecutive traces in the content are part of the same net.
One must remove alternate traces because when a cut necessarily crosses a net,

* it usually makes necessary crossings with two traces of the net---one entering the
inside of the net, and one leaving. Exceptions occur only at the endpoints of the
cut, and then only if those endpoints are terminals.

Impact of multiterminal nets

Provided that all the mathematics works out, the sketch routing and routability
theorems should continue to hold, and the sketch algorithms should change only
slightly. The only major changes come in the computation of congestion by Al-
gorithm F and the rubber-band equivalent, and the computation of doorways by
Algorithm R. What changes in Algorithm R, of course, is that pairs of crossings
by traces in the same net must be considered as single crossings for the purpose of
computing the lengths of struts. Algorithm T now requires that each cable in the
condensed RBE be assigned a width that reflects the total width of adjacent pairs
of strands belonging to the same net, and must also record any strands left over
so that Algorithm T can correct for duplication of crossings. Finally, when Algo-
rithm F computes the content of a cut, it must also collapse pairs of consecutive
traces when they fall in the same net. (Section 10A described similar modifications
to Algorithms T and F. Like these, they arose from a definition of congestion in
terms of content.)

The hard part, of course, is proving that the sketch algorithms remain correct.
I see no other option than to extend the design model and generalize the whole
theory of single-layer routing. If one stuck to the same outline, at the very least
Chapters 4 through 6 would have to be overhauled. In discussing other extensions
of sketch problems I have expressed confidence that the relevant theorems could be
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strengthened to match, but here I cannot. Many of the proofs in these chapters
use the assumption that a terminal intersects at most one wire. To eliminate this
assumption in the presence of the new definitions may be easy, or it may be impos-
sible. Whether the sketch model can accept multiterminal nets is really an open
question.

10D. An Alternative to the Sketch Model

No discussion of sketches would be complete without a mention of alternative mod-
els. We begin by exploring the problems involved in representing how wires connect
to their terminals. The difficulty of adding extended terminals and multiterminal
nets to the sketch model, and the awkwardness of working mathematically with
sketches, suggest that an entirely new model may be needed if our understanding
of single-layer wire routing is to be advanced. In this section I present a pair of
models for single-layer routing problems that may resolve these two issues. One, r
like the design model, is designed for mathematical convenience, while the other,
like the sketch model, is intended for algorithmic use. By offering a new perspective
on the connection of wires to their terminals, they handle extended terminals and
multiterminal nets in an elegant manner. And because the two models are closer
together than sketches and designs, they promise a smoother connection between
the mathematical and algorithmic parts of the theory.

Modeling of terminals

The connection of wires to their terminals is the major stumbling block in the
development of general models for single-layer routing. (A glance at the topics of
the preceding section may help to convince you.) Terminals cause difficulties both in
the technical development of the model and in its use. Because a wire has terminals,
its endpoints must be treated differently from its middle, and its terminals must

* be treated differently ftom all other obstacles. For instance, because of the special
status of terminals, the rubber-band equivalent of a sketch must distinguish between
trivial and nontrivial crossings. This problem is particularly acute when extended
terminals are present. In the design model, the burden of keeping track of respect
and degeneracy for cuts and half-cuts can be traced to the possibility of a cut or
wire winding around a terminal.

Slight changes in the way terminals are managed can make or break routability
theorems and routir:g algorithms. As an example, suppose that we allowed a sketch

, to have extended terminals but fixed the endpoints of each trace at specific points
on those terminals. To make things more plausible, we may permit the traces to
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run along their terminals for some distance before departing. With this extension,
my theory of routing collapses. Consider a trace that happens to wind once or more
about one of its terminals. The middle of this trace can come arbitrarily close to its

(fixed) endpoints, but cannot intersect them. Hence we must we give up all hope of
routing with minimum-length traces. Moreover, we can no longer expect to decide
routability by the safety of certain cuts; some cuts will need capacities that strictly
exceed their congestions. In other words, some of the routability conditions will go
from closed to open. One can alleviate these problems by allowing traces to have
self-intersections. The result is a model that is more complicated than the original
without being any more expressive.

(a) (b) ()Figure 10d-1. Compaction with rnultiter-
(c) minal nets. Suppose that nets are added

to the sketch model, and suppose that dur-
ing compaction the terminals in the sketch
part shown in (b) moved in the directions
of the arrows. The net could not move into
the desirable configuration (c), but would be
forced into something like (a).

The problems of terminal connections come to the fore when multiterminal nets
are considered. Many seemingly natural ways of handling multiterminal wires sim-

Nply do not work. One try that fails is the "loose" wiring rule described at the end of
Section 10C. The stricter rule that we adopted is not an entirely satisfactory foun-
dation for a study of routability either. It disallows routings that might often be
desirable, by a prohibiting a trace to approach the terminals in its net except those
to which it connects. Figure lOd-1 is only the simplest example. During routing or
compaction one might greatly improve the layout by moving part of a net a..ross
one of its terminals. But this sort of topological change is foreign to the sketch and
design models.

The network model

Now we come to the point of this section: a novel perspective on wire/terminal
connections that gives rise to very pretty alternatives to sketches and designs. For
concreteness I discuss the idea as an modification of the sketch model, and call the
analogue of a sketch a network. We think of a wire as a net, a simple loop in

4the routing region that encloses its terminals rather than intersecting them. See
Figure lOd-2. A net may not touch any terminal or obstacle, but it must enclose
at least one terminal and may enclose more than two. Terminals may be islands of
any shape. No two nets may intersect, and none may enclose another. To route a
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net, we replace it by any other net that is homotopic as a map of the circle S1 into
the routing region.*

0

0

20

Figure lOd-2. The network model. At left is a network of islands (made of dark
points and lines) and nets (light curves). Each of these elements has a width, the
number next to it. Between the two layouts are several copies of the unit polygon.
At right is the unique proper realization of this network with minimum-length
nets. Within these nets one can route the centerlines (grey lines) of multiterminal
wires that are properly separated.

The design rules for nets are similar to those for sketches and designs, but are
perhaps even simpler. Each net has a positive width and a corresponding territory,
the set of points whose distance from its image is less than half its width. In the
simplest case islands have zero width, and their territories are just themselves. A
layout is proper if and only if its elements (nets and obstacles) have disjoint extents
and its nets are self-avoiding. Thus the terminals of a net are treated no differently
than any other obstacles. A net is self-avoiding if the complement of its extent has
only two components that contain obstacles: one inside the net, and one outside.
If desired, islands may be given positive widths and corresponding territories. The
widths of a net's terminals need have no special relation to one another or to the
width of the net.

I conjecture that the sketch routability and routing theorems carry over to this
"network model" in an obvious way. Cuts, capacity, safety, and emptiness remain

* There is an amusing parallel between my models for multiterminal connections and

the models once discussed by particle physicists of the confinement of quarks in various
subatomic particles. According to current theory, each nucleon and each meson is made
of quarks bound together by a force that increases with distance, so that no quark can
be isolated from the others. For the purpose of predicting properties of these particles,
two models of quark confinement were introduced: a "string model", which pictured the
quarks as being held together by elastic strings, and a "bag model", which represented
the binding force as a flexible bag containing the quarks. One hears less of these models
now, presumably because quark interactions have become better understood.
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the same, as do the critical cuts. One must replace 'trace' by 'net' in the definition
of congestion. Then the routability theorem reads: A network is routable if and only
if its nonempty critical cuts are safe. The routing theorem remains at full strength:
In a routable network, every net has a unique minimum-length feasible realization,
and these realizations form a proper network. In other words, net lengths can be
simultaneously minimized, and the layout that does this is unique. One can even
modify the network model to permit the extents of the terminals of each net to
overlap. As with sketches, the only change is to eliminate degenerate cuts from
those that determine routability. Here a cut is degenerate if and only if (a) it can
be collapsed into an island, or (b) some bridge-homotopic cut is entirely enclosed
by a net.

Aside from the theorems it may support, the network model has two very nice
properties in itself. First, it contains within it an isomorphic copy of the sketch
model. To convert a sketch into a network, replace each trace by a net that surrounds
its terminals, give that net half the width of the trace, and deduce the width of
the trace from the widths of its terminals. I claim that the resulting network is
routable if and only if the sketch was routable. This claim is not even very hard to
prove. Second, the network model needs only minor changes to relate it to designs
instead of sketches. One needs only replace the routing region by a sheet, and
change some terminology: islands become fringes, territories become extents, and
so on. The notion of net homotopy, in particular, needs no change. In fact, the
only substantive change is that the routing obstacles grow to become polygons; and
these were already allowed. So by mildly restricting the obstacles in the network
model, we obtain a model that can be analyzed using covering spaces.

Benefits of nets

The network models may have many applications to single-layer wire routing,
but it arrived too late in my research to have any influence on the bulk of this thesis.
So close are the two network models to one another, and so naturally are the sketch
and design models embedded in them, that they may actually form a better bridge
between sketches and designs than the direct correspondence of Chapter 8. Even if
not, the idea of converting wires and traces into nets could be of significant use in
dealing with extended terminals. See Figure lOd-3. When computing flow, the first
and last crossings of a cut would be the only trivial ones, and so no complicated
test for triviality would be required. (This idea works only for two-terminal wires.)

But the network models are really intended to support a new and better theory
of single-layer wire routing, all the way from basic topology to algorithms. If such
a theory could be developed, it would have several advantages over that presented
here.
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Figure 10d-3. The rubber-band equivalent
of a network. The loops shown here are the
rubber bands for the nets in Figure 10d-2.
The congestion of a cut equals the sum, over
all crossings of that cut by rubber bands, of
the width of the net corresponding to that
crossing.

" It would treat all nets as fully flexible interconnections, regardless of the
number of terminals they enclosed. In particular, it would solve the problem
of Figure l0d-1: as terminals move or other obstacles intrude, each net
deforms so as to connect its terminals in the best way.

* It would neatly decompose the routing problem for multiterminal wires and
wires with nonconvex terminals. For such wires the problem of minimizing
total arc length is generally difficult. When the net corresponding to a wire
was routed, it would delimit the region in which that wire should run. Any
reasonable heuristic could then be used to route the actual wire. In the case
of nets with two convex terminals, the heuristic could be replaced by a fast
algorithm that minimizes wire length.

" It would handle extended terminals with no penalty in efficiency or algorithm
complexity. The problems of placing wire and cut endpoints would vanish,
taking with them the need to distinguish path plans and link plans. Related
technical difficulties, like the possibility that consecutive gates in an ideal
wire's tunnel intersect, would also disappear. S.

* The RBE data structure for computing flows and crossing sequences would
become simpler. Every net has a unique rubber band, regardless of terminal
shape, and every crossing of this rubber band by a cut corresponds to a
necessary crossing of the net by the cut. Compare Figure 10d-3.

" The concept of respect would disappear entirely from the theory, thus simpli-
fying many proofs. Degeneracy, also, would play a much smaller role, except
where terminal merging is concerned.

* Finally, the task of relating the two network models would be much simpler
than the task of relating sketches to designs. In particular, the algorithms
for routing, testing routability, and compaction would be nearly identical in
the two models.

In contrast, I can think of only a couple of disadvantages that would accrue
to algorithms and theory in the network model. One is that the algorithms would
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be slightly slower in the case of two-point nets, since there would be approximately
twice as many crossings between nets and cuts as between traces and cuts. The path-
finding algorithms might also need to run in two passes because they cannot initially
identify any point that the output net should pass through. I am confident that
no significant new algorithmic ideas would be needed. The only telling objection is
mathematical. Because nets are essential loops, they cannot be lifted to a simply
connected covering space of the routing region. A different covering space is needed
for analytical purposes: the universal covering space among those to which all
the nets can be lifted. Its properties are harder to derive than those of blankets.
Consequently, the theory of the network model may depend on more advanced
topological concepts than those I have employed.

V..;
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Conclusion

A Critical Review

This dissertation did not begin the study of wire routing with homotopy constraints,
and neither can it end it. At the risk of exhausting the reader's patience, therefore,
I will say a few more words about the sketch problems. The first part of this
Conclusion summarizes my main results on routing and compaction, puts them
in perspective against the practical problems of wire routing, and then recognizes
several related works, including several from which my papers have drawn and one w
to which my research has already contributed. The second part takes a careful
look at the sketch model, and draws from that look several suggestions for further
research.

A. Summary of Results

I have presented efficient algorithms for three problems of single-layer wire routing
with homotopy constraints: sketch routability, sketch routing, and one-dimensional
sketch compaction. These problems are natural abstractions of placement and rout-
ing tasks that circuit designers face when they distinguish flexible wires from rigid
features. The tasks are these: determine whether a layout is routable under a given
topology and layer assignment; if so, route it with wires of minimum length; and
compact the layout horizontally, introducing jogs into wires in an optimal fashion.
My solutions to the sketch problems work in a variety of wiring models, and they
can be extended to handle a variety of useful constructs.

With the possible exception of the sketch compaction algorithm, all the al-
gorithms are efficient enough to be used in practice. The algorithms for sketch
routing and routability testing run in time 0(n 2 log n) on input of size n. Sections
1E and IF suggest that their average-case time requirements can be reduced to
0(n /2 log n) time or less. The sketch compaction algorithm runs in time 0(n4),
while its average-case performance is probably Q(n log2 n) or better.

My algorithms employ two important data structures that help in computing the
properties of cuts. One--the rubber-band equivalent of a sketch-is geometric, and
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applies only to straight cuts. It supports fast computation of crossing sequences and
congestion via scanning. It handles straight cuts only. The other-the adjacency
graph of a sketch-is topological, and handles arbitrary cuts. It supports somewhat
slower computation of congestion via graph search.

To justify and explain the sketch algorithms, I have developed a body of defini-
tions and theorems that I refer to (somewhat pretentiously) as a theory of single-
layer wire routing. In reality it is a partial theory of two particular models of
single-layer routing: the sketch model and the design model. The centerpieces of
the theory are two theorems that characterize the routability of a design and the
optimal routing of a routable design in terms of the attributes of certain cuts and
half-cuts. The design routability theorem states that a design is routable if and only
if its major straight cuts are safe. The design routing theorem shows that every
routable design can be routed so as to minimize the length of every wire, and it
characterizes the optimal routing of each wire as the minimum-length route of that
wire whose nontrivial straight half-cuts are safe. My proofs of these theorems give
the first mathematically sound foundation to single-layer wire routing in multiply
connected regions. I have also shown how to carry the design theorems over to the
sketch model, and thereby provide the first rigorous treatment of algorithms for
wire routing with homotopy constraints.

My treatment of the design model introduces a powerful tool for analyzing one-
layer routing: lifting to a covering space of the routing region. None of the prob-
lems I encountered in studying the design model required me to step outside this
framework. Covering spaces allow one to formalize and study many deceptively
simple-looking concepts that play key roles in the routing problem. Some of these
notions-flow, necessary crossings, and barriers-made sense when routing in simply
connected regions, and via covering spaces can also be applied to designs. Others,
such as the relations of respect and degeneracy between cuts and designs, have no
such counterparts, and yet to overlook them can lead to disaster. (Before I hit upon
the right definitions for these concepts, they caused persistent problems.) The use
of covering spaces also allows one to treat cuts that are not simple, which opens the
possibility of analyzing half-cuts in terms of their associated cuts.

aApplications to practical problems

After all the algorithms are presented, analyzed, justified, and extended, the
Ow question of their practical utility remains. Not having implemented them in any

form, I cannot answer with certainty. Nevertheless a short reply is possible. The
sketch algorithms are limited in their practical applications mainly by the ability of
sketches to represent active devices in integrated circuits. Where design rules are
simple, the sketch algorithms-or algorithms derived from the same ideas-show
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promise. Compared to modeling, performance is less of an issue. I have presented
several ideas for improving the average-case behavior of the sketch algorithms, and

* there are undoubtedly many more to be found by implementing and experimenting
with them. Moreover, the constants in their time and space bounds are small.

Most practical routing problems involve multiple layers, and do not specify the
topology of the routing. I have little to say about such problems; my results con-
cern provably efficient (polynomial-time) algorithms, while the problems of greatest
practical interest are all NP-complete. Nonetheless, there are several ways in which
my results might be applied to multilayer routing. Most obviously, a multilayer
routing problem can be reduced to single-layer problems by first choosing rough
routings of wires, and then assigning them to layers and placing the vias where
they change layers. Good heuristics are known for the first problem, which is called
global routing. Unfortunately, few heuristics are known for layer assignment and
via placement (but see [41]).

A more robust approach allows for local topological changes, such as moving
a wire across an obstacle or another wire. Starting with an infeasible assignment
of wires to layers, one can identify the unsafe cuts, and try to shift wires away
from them to reduce their congestion. This process is facilitated if on each layer
the wires run in a preferred direction, as is common in integrated circuits and
multilayer printed circuit boards. At least one PCB router was implemented using
such a technique [9]. Its designer noticed that its "heuristic" method of testing
whether a layer was routable, namely checking that no cut had greater congestion
than capacity, never seemed to err. This suggestive piece of experimental evidence
provided the initial motivation for my, work.

Although this dissertation emphasizes routing, my compaction algorithm is con-
siderably more powerful than my routing algorithm, and is more likely to prove
useful. The reason is simple. In compaction, one may reasonably assume that the
topology of the layout and the layer assignment are given, while in routing, most of
the problem lies in choosing a proper topology and layer assignment. This obser-
vation makes the theory of routing no less important, however, for the compaction
algorithm uses the routing algorithm as a subroutine.

The sketch compaction algorithm may also have applications to routing prob-
lems. The idea, which has been tested on channel routing with excellent results (see
Acknowledgements, in the Preface), is as follows. One first expands the layout so
that a conventional routing program, which may have difficulty with crowded lay-
outs, can succeed. One then applies a compactor with the ability to insert arbitrary
jogs in order to compact the layout to its proper size.

Related work

This thesis synthesizes and generalizes results from three primary sources. One
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is the paper by Tompa [52] that solves the problem of river routing in a rectangular

channel with terminals along its top and bottom. This paper first introduced the
notion of the barriers for a wire. It showed that every routable channel can be
routed by choosing a minimum-length barrier-avoiding routing for each wire. That
demonstration formed the outline for my proof that the ideal embedding of a design
is safe. Another source is the algorithm of Leiserson and Pinter [22] that uses rout-
ability conditions to compact a river routing channel horizontally. The third source
is the paper of Cole and Siegel [6] that solves Pinter's problem called 'DRH' [41],
which is essentially the sketch routability problem in the grid model. That paper
first claimed the equivalence of routability and safety-what I would call the sketch

routability theorem for grids-but without a detailed proof. I relied upon that result
in an earlier paper [21] when my own attempts at proving the routability theorem
were failing, but my present proof is independent of their result. The algorithms
and theorems in this thesis subsume those in the sources just mentioned, but of
course the special-case algorithms are faster and easier to prove correct.

Recently Storb et al. [33] have developed an algorithm that appears to solve the
sketch routing problem in an arbitrary wiring norm. Building on the algorithms

for constructing the rubber-band equivalent of a sketch and for testing routability,
% they propose a routing algorithm for the euclidean wiring norm with a worst-case

execution time of O(n'). If this result is borne out, it will complement my routing
algorithm, which is faster (time O(n 2 log n)) for polygonal wiring norms and slower
(time O(n4 log n)) for other norms. Their method involves sweeping through a with
scan lines perpendicular to each rubber band, constructing barriers and routing
through them as in [52]. They, like I, call upon a simply connected covering space
to understand how separate parts of a wire interact. How difficult their algorithm
is to implement, how complicated a correctness proof it will need, and how quickly
it can solve problems of practical size-the answers to these questions are as yet

unknown. The same authors point out that if the input to the routing problem

includes not only rough routings of the wires, but also a planar graph in which their
realizations must run, then the problem of routing with minimum total wire length
becomes NP-complete. (Wire length can be minimized in certain fixed graphs, such

as grids.)

All the works I have just described refer explicity or implicitly to the dependence

of routability on the congestions and capacities of cuts. This phenomenon occurs

in other routing problems as well, notably the problem of routing edge-disjoint
paths in a planar graph between pairs of terminals on its outer face [3, 17, 32].
The algorithms for this problem and its various special cases are all derived from a
theorem [40] concerning the existence of such paths. That theorem states that there

exist edge-disjoint paths connecting the terminals if the free capacity (margin) of

every cut is nonnegative and even. (Here a cut is not a path, but rather a partition
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Part B Directions for Future Research

of the vertices into two sets.) This routing problem is rather different in character
from mine, however, because it allows paths to cross.

B. Directions for Future Research

I close with a critical look at my models and a discussion of open problems. The
deficiencies of the sketch model, in particular, suggest several directions for further
investigation. My conclusion is that a great deal of work remains to be done in all the
areas I have touched upon-the application of topology to prove routing theorems,
the design of efficient algorithms and data structures, and the implementation of
those algorithms.

A critique of the sketch model...

The many extensions presented in Chapter 10 may convince some readers that
the sketch model is a robust one, and in some ways it is. But the reader who
has looked carefully at the amount of work needed to justify the extensions may
come to a different conclusion. Indeed, one might question whether my treatment
of the unadorned sketch model is adequate, given the amount of handwaving in
Section 8C. All my results concerning sketches rest not only on the detailed theory
of the design model, but also on a complicated limiting process that relates this
model to the sketch model. Three of the extensions I have proposed-elements
of differing materials, curvilinear sketch elements, and multiterminal nets-involve
strengthening both supports of the sketch results. What's worse, there is no sure
way to tell whether these extensions would somehow interfere, except by carrying
through the proofs in as general a model as possible. Though generalizing a theory
is usually much easier than constructing it from scratch, in this case the sheer
mass of technical material makes it a daunting task. Still, in my opinion there is
no substitute for a rigorous correctness proof of an algorithm, except perhaps an
extensively tested, practical implementation.

But there are troubles on the practical side as well. Because sketches are so ab-
stract, there is no straightforward way to convert a more conventional representation
of a integrated circuit layer into a sketch for the purpose of routing or compaction
(although the reverse is easy). On the other hand, even with all envisioned ex-
tensions, sketches may be too simple to serve as the primary geometric denotation
of circuit layers in a CAD system. Even if they could, their ability to represent
devices and multiterminal nets is disturbingly inflexible. We saw the difficulty of
representing transistors in Section 10A, and the problems with multiterminal wires
were made apparent in Section 10D. Sketches make more sense as an abstraction
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of the interconnections among large circuit blocks than of the wiring within "leaf
cells".

To be fair, the sketch abstraction may be perfectly adequate for printed cir-
cuit board layers. The components of a PCB layer, terminals (vias) and traces,
are easily identified and correspond directly to sketch elements. More permissive
wiring rules than grid-based rules are common, and fit nicely into the sketch model.
Finally, optimal treatment of multiterminal nets may not be crucial. But except
for the sketch routability theorem and its implications for routability testing, the
application of my results to circuit boards is not particularly interesting. The most
powerful sketch algorithm is Algorithm C, and it would find little use in compacting
circuit board layouts, since modules (in this case, chips) are not generally free to
move. In any case, their placement is dictated more by the physical volume they
occupy above the routing layers than by routability constraints.

...and an apologia

So the sketch model sits in an awkward position. It is more abstract and sim-
plistic than a practical user would like, yet it is mathematically inconvenient. For
these reasons I have come to regard the sketch model as deficient. Why, then, did

I choose it? The reasons are mainly historical. It was a natural outgrowth of the
grid models previously in vogue among theorists, and I had previously published
algorithms using it [21, 28]. These were the algorithms I set out to justify. I could
have taken up these algorithms in the design model, for example, rather than the
sketch model. In a sense the two models are on equal footing: while the design
model is flawed for representing real designs, the sketch model flawed for mathe-

matical analysis. But because the terminals in a sketch are points, the algorithms
are simpler in the sketch model, and this fact tipped the balance. The algorithms
dictated the model, not the other way around.

Of course, none of the flaws in the sketch model means that study of sketches
* cannot provide valuable insight into the issues of routing, routability testing, and

compaction in more complex models. But if insight is all that we carry away, why

spend so much time analyzing the technical aspects of one model? The answer
is simply that some model must be chosen; the technical details come with the
territory. Surely there are models better suited for practical use. But building a

*.-I practical system was never an objective of my research. The real objective was to
build technical tools, where none were previously known, for solving problems of

single-layer routing, routability testing, and compaction in the presence of homotopy
constraints. This I have done by developing the theory of routing in the design
model, and showing how results from one model can be brought over to another.
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Directions for future research

One way to build upon the ideas in this thesis would be to redevelop them in

a model that avoids some of the defects of the sketch model. The sketch model is
weak in two general areas: representing devices and modules in integrated circuits,
and representing wiring structures like multiterminal nets and extended terminals.
I see two corresponding directions for model changes: toward greater accuracy and
faithfulness in representing practical circuits, and toward greater versatility and
mathematical cleanliness. Regarding cleanliness, I have no solution to the problem
that the use of covering spaces requires features to have positive diameter, which
precludes the attachment of wires to terminals of the same size. Consequently, I

see no good way to analyze the models I am about to discuss except by passing to
an auxiliary model (like the design model) whose routing region is a manifold, and
carrying back the results via convergence arguments. But we can hope to make this
process easier, as in the network models of Section 10D.

As we noted in Section 10A, the sketch model has trouble representing the
variety of different materials that interact on the lowest layers of a chip. The root
of the problem is that the only objects that can coexist or coincide in a sketch are
traces and their terminals. A real chip has many types of elements whose extents
can overlap, not just wires and terminals. Typically a wire can overlap or approach
regions in the device to which it is connected, but wires that are not connected to
that device must stay away. Several good ideas for representing wires and devices
in a simple and quickly accessible form may be found in [37]. Some of them might
be incorporated into the sketch model. Most useful would be a way of relaxing the
separation constraints among the parts of a device and the wires that connect to it.

Another possibility is to return to a view of modules as polygons with terminals
on their boundaries. Point modules (isolated terminals) should also be permitted.
One would have to confront directly the complicated problem of module intercon-
nection: how to represent preexisting cells of a design in a compact form that
facilitates routing and checking of design rules among modules. An advantage of
solid modules over collections of scattered obstacles and terminals is that they can
hide what might be design-rule violations in the context of routing, but are actually
proper due to the function of the device. Module boundaries could include pointlike
terminals, extended terminals, and other feitures. The layout should assign mate-
rials to all wires and features should be assigned materials, and could potentially
mandate a different separation constraint between each pair of materials.

Two main technical issues would arise in a model based on modules: what
paths should be considered cuts-paths landing too close to a terminal would not
qualify-and what restrictions must be placed on the separation distances and the
composition of module boundaries. The goal, of course, would be to prove routabil-
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ity and routing theorem- like those for sketches, and adapt the sketch algorithms tothe new model. I contend that the concepts developed in the design model will be

useful in new models as well. In particular, congestion can be measured by relating
it to a flow-like quantity defined using covering spaces.

Open problems

In addition to the general problem of finding better models for single-layer wire
routing, there are several specific questions that future research could aim to answer.
Those concerning extensions of the sketch problems were discussed in Chapter 10;
I list the most significant of them below.

" Can a single sketch incorporate wires of differing materials, and hence dif-
fering separation requirements?

" Can the sketch theorems and algorithms be enriched to provide for extended
terminals and multiterminal nets?

" Does the network model (see Section 1OD) support efficient algorithms for
routing, routability testing, and compaction?

I conjecture that the answer is yes in each case. The remaining questions are larger
and harder, and I make no predictions about them.

" How efficiently can the sketch routing problem be solved when the wiring
norm is not polygonal?

" How fast can the sketch routing and compaction algorithms be made to run
on practical examples? In what cases are they superior to algorithms that
treat wires as objects to be moved?

" Can Algorithm C be extended to handle an unroutable initial configuration?
How should the sketch compaction problem be defined in this case?

" How can routability constraints be applied to two-dimensional layout com-
paction? What data structures might be used for computing congestion
when features were moving in all directions?

" What mathematical tools can assist the study of the network model? Does
this models indeed support strong routability and routing theorems?

And for the mathematically adventurous, there is the following question:

* Can the results of the design model be generalized to higher dimensions?
(Can one route surfaces in R' among toroidal terminals and obstacles?)

Further studies of routing problems with homotopy constraints, even those with lit-
tle or no relevance to practice, may prove fruitful by clarifying the general principles
at work.
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Since this thesis spans three areas that are only weakly related-topology, algo-
rithms, and circuit layout-and introduces a substantial amount of new terminol-
ogy, I have collected here the definitions of terms that are likely to be unfamiliar.
Due to software limitations, however, I have not included pointers to the places
where the terms are first used.

absolute retract: A space A is an absolute retract if whenever a normal space X has a ,
closed subspace B homeomorphic to A, then B is a retract of X. The fact that I and
R' are absolute retracts follows from the Tietze Extension Theorem [38, p. 212].

adjacency graph: A data structure used by Algorithm C, the sketch compaction algorithm,
for computing congestions of straight cuts. See Sections 7C and 9B.

akin: Subcuts are akin if their liftings connect terminals in the same way. See Defini-
tion 4d.1. Subcuts that are akin have link-homotopic associated cuts, and therefore
share properties such as respect for a given design. Two crossings of links (or chains
for links) are akin if those links can be lifted to reflect the crossings such that cor-
responding liftings share their terminals. Two plans (crossing sequences) are akin if
they have the same length and corresponding crossings are akin.

angle: In Sections 7Dand 7E, a point of the unit polygon of the wiring norm. The angle
at which a path a travels is the normalization of the vector a(1) - a(O), assuming that
a is not a loop.

arc length: The arc length of a path a in the norm is defined as follows. If a is
piecewise linear, then its arc length is the sum over all its segments r of the quart.*ty
11r(l) - r(O)JI . Otherwise the arc length of a is the supremum of the arc lengths of
the polygonal approximations to a, that is, piecewise )inear paths 0 from a(O) to a(1)
such that a(s) = 3(S) for each joint s of 3. By default we measure arc length in the
euclidean norm.

arrangement: An arrangement on a sheet S is a finite set of disjoint simple cuts in S.

article: A connected set of details in a design: either a nonterminal fringe, or the image
of a wire together with the wire's terminals.

aspect ratio: The ratio of a rectangle's longer dimension to its shorter dimension.
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associated cut: A cut formed from a half-cut or mid-cut by (1) extending it along its
link(s) to form a link, and (2) applying a link homotopy to obtain a cut. In large
measure, the associated cuts determine the properties of a half-cut or mid-cut.

barrier: In general, a barrier for a wire is a connected area that no feasible realization
of the wire can enter. In the design model, a barrier is a subset of a forbidden zone
that constrains the lifting of a wire, rather than constraining the wire directly. See
Section 5A.

base: A fringe that contains the set from which a barrier grows (cf. Lemma 5a.4). Also,
the range of a covering map.

base point: A distinguished point of a space where the loops that define its fundamental
group begin and end.

basis: A basis for a topological space X is a collection of open sets of X that contains "ar-
bitrarilv small" neighborhoods of every point of X. Specifically, for every point x of X,

i and for every open set U containing x, the collection must include a neighborhood

of x lying within U.

bent: A bent path is a simple path having at most two segments.

blanket: A simply connected cover of a sheet.

border: A node of the adjacency graph borders the gates across which it has edges. It
borders on a point o(O) in the direction of a if the first piece of the partition that a
enters contains the region represented by that node.

borders: The borders of a piece P in a pattern for the sheet S are the components
of P n Bd S. A border for the pattern is a border for any piece of the pattern.

boundary: I use this term only for manifolds. The boundary Bd M of an manifold M is
the set of points of Af that have boundary patches. See Definition 2d.1. The boundary
of an n-manifold is an (n-1)-manifold whose boundary is empty.

boundary patch: A patch h: U - H" about a point x E U such that h(x) E R - C H".

boundary property: A set of potential cuts %P for a sketch S has the boundary property
if all the configurations in C(S) that protect every potential cut of S lie within some
closed subset of C(S).

bounding obstacle: In a sketch, a polygonal obstacle that encloses all the other features
and the traces of the sketch. We add a bounding obstacle to a sketch for the purpose
of relating it to designs.

branch: The branches of a design are the components of the inverse images of the design's
articles (under the covering map). Two fringes in a blanket are in the same branch
if and utly if a link comnecting them is degenerate. Branches are to blankets what
articles are to sheets.

bridge: In a sketch, a path whose endpoints lie on features but whose middle intersects no
.4, feature. Traces are bridges, and the cuts of a sketch are the images of linear bridges.

bridge bomotopy: A piecewise linear homotopy between bridges that moves their end-
points along their respective islands and moves their middles through the routing
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region. Two bridges are bridge-homotopic if there is a bridge homotopy that takes

one to the other.

cable: In the RB, of a sketch, a group of rubber band segments (strands) with common

endpoints.

CAD: Computer-aided design.

canonical: Also called 'parameterized by arc length'. A path a is canonical if the euclidean
arc length of each subpath a,.t is just It - al times the arc length of a.

capacity: The capacity of a cut (or subcut) measures the amount of wiring space that the

cut affords. It is defined as the arc length of the cut, measured in the wiring norm,
decremerted to account for the widths of the objects that contain the cut's endpoints.

chain: Any path in a manifold is a chain; it contains zero or more links. A chain for a
path a is a chain that is path-homotopic to a.

channel: A simply connected routing region, usually rectangular. Also used informally to

mean the routing space between two islands in a sketch.

chip: See integrated circuit.

clean: Making crossings only at its endpoints. A path in a sheet is clean in a design if it
intersects the articles of the design at its endpoints alone.

closure: The closure of a subset A of a space X, denoted Ci A, is the minimal closed set
of X that contains A.

coherent: Simple links in a blanket are coherent if they lift wires (or routes thereof) in
the same design. See Definition 4c.2.

collapsible: Civen a design fl and an arrangement r, we say that a deviation W.:t of a
wire in f1 across a subpath l'a:b of a cut in r is collapsible if w,:t is clean in r and 'y..b

is clean in fl.

compact: Compactness is a very important topological property. A topological space is

compact if every collection of open sets that covers the space has a finite subset that
also covers the space. The compact subspaces of R n are the closed and bounded sets.

compaction: See sketch compaction and layout compaction.

component: Also called 'connected component'. The components of a topological space
are its maximal connected subspaces. Two points of a space X lie in the same com-
ponent of X if some connected subspace of X contains both points.

computational geometry: The study of algorithms that manipulate geometric objects.

concatenation: Formally, the concatenation of two paths a and ' is the path y = a * 3
such that = a and -y = l , with t = . Informally, we allow t to be any point
in (0, 1).

condensed RBE: A form of the rubber-band equivalent in which the strands within each
cable are not represented as separate entities. Instead, the condensed RBE records
only the total with of the strands within each cable.
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configuration: A vector of horizontal displacements of the modules in a modular sketch.
The configuration d = (dl, .... d) for a modular sketch S corresponds to a sketch S(d)
in which module i has been shifted right by a distance d,.

configuration space: The configuration space of a sketch is the set of configurations that
preserve its topology. See Section 9A.

conform: A link w conforms with an arrangement r if for every cut -y E r, every crossing
of -p by w is necessary and no two are similar. A design Q? conforms with r if every
link in Q conforms with r.

congestion: The congestion )f a cut in a layout measures the minimum amount of wiring
that must cross the cut, regardless of how the wires (or traces) are routed. In most
cases this quantity is equal to the flow across the cut.

connected: A topological space is connected if it cannot be partitioned into two disjoint,
nonempty open sets. See path-connected.

constraint: In the context of compaction, an inequality relating the positions of two mod-
ules.

constraint graph: A edge-weighted, directed graph in which each vertex denotes a variable
and each edge denotes a simple linear inequality between two variables. If zk is the
variable represented by vertex k, an edge of weight aij from vertex i to vertex j
represents the constraint x. - xi > aij. By computing longest paths in the constraint
graph, one can assign values to the variables so as to satisfy the constraints.

content: The sequence of wires, traces, or rubber bands that a cut necessarily crosses.

contractible: A space is contractible if it can be shrunk to a point within itself. The
homotopy that does this is called a 'contraction'. Contractible spaces are simply
connected.

convex: A subset X of R" is convex if for every pair of points in X, the line segment
between them also lies in X. A function f: X - R1 is convex if X is a convex subset
of R' for some n, and for every two points x, Y E X and every point t E [0, 1], we have

f(tX + (1 - t)V) :_ tfW + (1 - t)f(Y)

convexity property: A set of potential cuts %P has the convexity property if for each V, E q,
the capacity of 1t(d) is a convex function of the configuration d.

convolution: The convolution of two planar regions is the set of all vector sums of a point
one region with a point in the other.

corridor- A sequence of line segments, called doorways, through which a path must pass;
the input to Algorithm W. See Section IB.

covering map: This one is hard to explain. See Definition 2b.1 and Figures 2b-1 and 2b-2.
covering space: The domain of a covering map; also called 'cover'. A space that looks

locally like the space it covers, but whose parts may be connected together differently.

covering transformation: Also called 'deck transformation'. A covering transformation is
a homeomorphism of a covering space with itself that preserves the covering map. For
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any two liftings of an object, there is a covering transformation that carries one to the
other, provided that the covering space is connected and locally path-connected.

critical: A critical cut in a sketch is one that begins at a feature endpoint and travels to
the closest point (in the wiring norm) on another feature. The critical cuts of a sketch
are decisive in the sense that their safety and emptiness determine the routability of
the sketch.

A critical potential cut is a potential cut xpQ, where p is a feature endpoint and Q
is a feature, such that XpQ(d) is a critical cut from p(d) to Q(d) whenever one exists.
See Definition 9c.1. Algorithm C uses critical potential cuts to generate routability
constraints for sketch compaction.

crossing: Informally, a place where two paths meet. Formally, a pair (s, t) such that the
image of s under the first path equals the image of t under the second path. In the
design model, we allow s, t E [0, 1], while in the sketch model, we require s, t E (0, 1).

crossing sequence: In the sketch model, the crossing sequence of a ray j- at p is the
sequence of rubber bands that cross over that ray at p, as defined in Section lB. For
the meaning of crossing sequence in the design model, see plan.

cross over: Two simple links in a blanket cross over if the image of one contains points in
both scraps of the other.

curvilinear: Said of wiring norms: not piecewise linear.
cut: A path (or its image), often linear, used to test whether a layout is routable. The

most important property of a cut is its safety or lack thereof.
cut: A simple link in a blanket cuts another link in the blanket if the terminals of the

second link lie wholly one opposite sides of the first. See Definition 4b.l.
decisive: "Deciding routability". A set of cuts in a sketch is decisive if a sketch with the

same set of features is routable if and only if all those cuts are either empty or safe in
that sketch. By the sketch routability theorem, the critical cuts form a decisive set.
A similar notion called '1-decisiveriess' is defined for sheets; see Definition 6d.l.

deformation retract: A subspace A of a space X is a deformation retract if X can be
shrunk down to A without moving any point of A. The homotopy that does the
shrinking is called a 'deformation retraction'.

degenerate: A cut is degenerate in a design if it is path-homotopic to a path in a single
article of the design. This definition applies also to half-cuts and mid-cuts for wires
in the design. More generally, a half-cut or mid-cut is degenerate if one of its asso-
ciated cuts is degenerate. Degeneracy of cuts in sketches is similar, and is defined in
Section 10C.

design: The more mathematical of my two basic representations of a circuit layer. Designs
are defined in Section 4A. See also sketch.

design rules: Guidelines for the design of integrated circuits, intended to prevent unwanted
behavior in the fabricated devices. For example, the design rules mandate a minimum
separation between wires on the same layer, lest inaccuracies in the fabrication process
cause the wires to short together.
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details: The details of a design are its wires and fringes.

detour: A detour of a link around a barrier is a link that does not intersect the barrier,
and that is formed by splicing in pieces of barrier's frontier into the original link. See
Definition 5a.5. To find an evasive route of a wire in a safe sketch, we lift it and make
detours around the barriers for the lifting.

deviation: A subpath w,:t of a wire is a deviation across a subpath -Y:b of a cut if w.t p--p

l'o:b or wt: * Yia:b is a trivial link.

diagonal: Diagonal cuts are those that most strongly constrain the traces of a sketch; they
have minimal capacity for cuts of their euclidean length. Formally, a cut is diagonal
if its slope is diagonal and one of its endpoints is the vertex of a feature or fringe.

diagonal angles: The angles that correspond to the diagonal slopes.
diagonal slope: The wiring norm I1 1I defines the diagonal slopes: the slope of a line

in R 2 is diagonal if for every two points p and q on the line, q is a vertex of the
polygon { x : jjx - pl) = jjq - PA) ).

discrete: A topological space X is discrete if every point of X is open in X. For example,
the integers form a discrete subspace of the real line.

divide: A planar region X C R 2 divides a sheet if two fringes of that sheet fall in different
components of R 2 

- X.

divisive: An article of a design is divisive if its extent divides the design's sheet. Divisive
articles are undesirable, for they may represent unwanted loops in the layout.

dominant: A set of cuts in a sheet is dominant if it dominates the set of all nontrivial
straight cuts in that sheet. Dominant cut set are $-decisive, by Corollary 6d.4.

dominate: One set of cuts in a sheet dominates another if every cut in the second set is
either weak or can be reduced to a cut in the first set by a homotopy that does not
increase its length. See Definition 6d.2. We exploit the relation of dominance to find
small t-decisive cut sets.

doorway: In a safe sketch, each necessary crossing of a cut by a trace has a nonempty
doorway. The doorway is the portion of the cut where a feasible realization of the
trace may locate that crossing.

dual graph: The dual of an embedded planar multigraph is the graph whose nodes are
the faces of that graph, and which has an arc between two faces for each edge of the
original graph that borders on those faces.

ECE: See elastic-chain equivalent.
edging: An edging for a sheet S is a finite set of convex polygons and line segments in

R2 - (S - Bd S) whose union contains Bd S. See Definition 6d.7.

elastic: A canonical path is elastic if it has minimum euclidean arc length among all paths
0* in its path-homotopy class.

elastic-chain equivalent: A set of chains obtained from a design by replacing each wire in
the design by the elastic chain for some route of the wire. In the "standard" ECE,
one replaces each wire by its own elastic chain.
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element: An element of a sketch is a feature or trace in the sketch.

embedded: An embedded planar graph is one that comes with a specific drawing in the
plane.

embedding: A map that is a homeomorphism onto its image. Also refers to a wire that is
link-homotopic to a given wire, or a design that results from "re-embedding" (routing)
the wires in another design.

empty: A cut is empty if its flow is zero and its endpoints lie on the same fringe or island.
Even if a empty cut is unsafe, we can ignore it.

enclose: A loop in the plane encloses a set if it cannot be shrunk to a point without
touching that set.

entanglement: The entanglement of a wire (or trace) with a cut is the minimum number
of crossings of the cut by any route for the wire (or trace). It counts the crossings
that cannot be "untangled" by routing the wire. Compare winding.

equivalent: Two covering spaces of the same base space are equivalent if they are home-
omorphic in a way that leaves the covering maps unchanged. See Proposition 2b.7.
Two configurations of a modular sketch are equivalent with respect to a potential
cut 0 if in moving linearly from one to the other, i is always a cut.

essential: Not path-homotopic to a constant loop. This definition is not entirely consistent
with standard terminology, which defines 'essential' as "not homotopic to a constant
map". I do not need the latter concept, however.

euclidean: The euclidean norm I I is defined by I(x, y)J = Vrx'2 +y 2 .

evasive: Avoiding its barriers. In the design model, a route of a wire is evasive if it has
no unsafe, straight, nontrivial half-cuts.

eventually: Section 8A defines for each suitably restricted sketch a family of sheets and
designs parameterized by a positive real number E. A statement involving c holds
eventually if it holds for all c less than some eo > 0.

exposed: A cut a in a sketch is exposed if the corresponding cut ab eventually satisfies

lab I 11- al - 2c.
extent: Essentially a synonym for territory. The details of a design have extents, whereas

the elements of a sketch have territories. Anyway, the extent of a detail of width d is
the set of points closer than d/2 units to that detail, as measured in the wiring norm.

face: The faces of an embedded planar graph are the regions into which the edges of that
graph divide the plane. The "outer" face is the unique unbounded one.

feasible: In general, a realization of a wire in a routing problem is feasible if it is part of
a correct solution to the routing problem. Thus, an embedding of a wire in a design
is feasible if some proper embedding of the design contains it.

feature: An inflexible object in a sketch. Every feature is a point or line segment.

flat: A n-manifold is flat if it comes with a local embedding into Rn. Flat manifolds
include sheets, blankets, and scraps of blankets.
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flow: The flow across a cut is a weighted sum of the necessary crossings of that cut by
wires, where each crossing is weighted by the width of its wire. (Actually, flow counts
equivalence classes of necessary crossings, rather than the crossings themselves.) Flow
and congestion are equal for simple cuts, but flow is the deeper and more important
of the two concepts. The notion of flow makes sense in all the routing problems I

consider, although I define it formally only for the design model.
forbidden: Said of half-links in a blanket: contributing to a barrier. A half-link a is

forbidden to a wire lifting ; if to route Z; through a(i) would keep w from being
evasive. See Definition 5a.1.

forbidden zone: The union of the left-hand or right-hand barriers for a wire lifting.

free: A path is free in a pattern if no seam in the pattern contains either endpoint of the
path.

fringe: A component of the boundary of an n-manifold. A fringe is a path-connected
(n-1)-manifold, closed in its parent manifold. The fringes of a sheet form the termi-
nals and routing obstacles of the designs on that sheet.

frontier: The frontier of a subset A in a space X, denoted FrA, is CIA - Int A: the set
of points in the closure of A not in the interior of A.

full plan: The full plan of a in an arrangement r is the plan containing all the crossings of
the cuts in r by a, sorted by position along a. It makes sense only when the crossings
of a in F are discrete.

fundamental group: An algebraic structure on the path classes of loops in a space at
a given base point. See Definition 2a.3. The fundamental group of a space is an
important topological invariant, part of the study of algebraic topology.

gap: A portion of a chain between two major links of the chain.
gate: A straight path forming part of a tunnel or a partition of a sketch.
gate arc: In the adjacency graph of a sketch, an arc representing adjacency across a gate.
gate list: The sequence of gates that a path crosses over, whether in the routing region

of a sketch or in its adjacency graph.
graph: A mathematical structure comprising a set of "vertices", also called 'nodes', and

a set of "edges", also called 'arcs', each of which is "incident" on exactly one or two
vertices. Often the edges and vertices have additional information attached to them.

grid: The set of points in the plane which have at least one integral coordinate. The lines
in this set are called 'gridlines', and the points where these lines intersect are called
'gridpoints'.

grid-based: Refers to a wiring model in which wires are constrained to run in a grid of
horizontal and vertical lines.

0@ half-cut: A half-link between a fringe and a route of a wire, used to measure the flow
between the fringe and the wire.

half-link: A path a in a manifold that touches the manifold's boundary at Q(0) only.
half-thread: The image of a simple half-link.
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Hausdorff: In a Hausdorff space, every two distinct points have disjoint neighborhoods.
All the spaces I consider are Hausdorff.

height: The height of a potential cut Oq, whose endpoints do not move vertically, is the
difference between the yi-coordinates of p and q.

homeomorphism: A continuous, bijective function with a continuous inverse.

homotopy: A 'continuous deformation' or 'continuous family' of topological maps. See
Definitions 2a.1 and 2a.6.

IC: See integrated circuit.

ideal: An ideal route of a wire is canonical, evasive, and as short as possible. Ideal
embeddings are wires, and form a design; anything associated with this design is also
called ideal. We route every wire in a safe design by means of its ideal embedding.
By analogy with designs, we also apply the term 'ideal' to sketches; every trace in
a routable sketch has an ideal realization, and these form a proper realization of the
sketch.

inner: Said of fringes in a sheet: an inner fringe is one whose inside is not part of the
sheet. Every sheet has at least one inner fringe. Compare outer.

inside: Every simple loop in a blanket or in the plane has an 'inside' and an 'outside'.
The inside of a blanket loop includes no part of any fringe.

integrated circuit: An electronic device made by depositing materials in and on a wafer
of semiconducting material in precisely controlled patterns. Often called 'chips' or (in
the popular press) 'microchips', integrated circuits are the computational elements at
the heart of every modern digital computer.

interior: The interior of a subset A of a space X, denoted Int A, is the maximal open set
of X contained in A.

intersection graph: The intersection graph of a sketch and a partition of that sketch is the
graph whose nodes are features and the line segments where traces and gates intersect,
and whose arcs are the subpaths of features and traces that connect these regions.

island: A maximal connected group of features in a sketch.

jog: A joint of a wire or trace.

jog point: A point at which at which a wire is allowed to develop a jog during compaction.

joint: A point (in the unit interval I) at which a piecewise linear path is not linear.

kinship: See akin.

layout: In general, the geometric structure of a circuit design. I use the term 'layout' to
refer to an instance of a wire-routing problem, such as a sketch or design.

layout compaction: In general, the problem of minimizing the area of a circuit layout by
altering its geometry.

leaf cell: The simplest modules in a VLSI design aside from transistors and other basic
devices.
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lift: Also called 'lifting'. In the context of a covering map p: Al - X, a lift of a map g: C -

X is any map : C - Af such that poi = g. Outside of Chapter 2, the covering map p
is always taken to be the covering of a sheet by its blanket.

lifting: The process of converting maps into a base space into maps into its covering space.

line segment: A line segment is the image of a straight path.

linear programming: A classical and very important optimization problem: maximize a
given linear function of real-valued variables subject to specified linear inequalities.
Linear programming is solvable in polynomial time.

link: A path in a manifold that touches the manifold's boundary at its endpoints alone.

link code: The sequence of cuts in an arrangement necessarily crossed by a link or a chain
for a link. See Definition 7b.1.

link homotopy: A homotopy between links that moves their endpoints along their respec-
tive fringes; or the relation of being link-homotopic. Two links are link-homotopic if
there is a link homotopy (in the first sense) between them.

link plan: A sequence of crossings that a link (or a chain for a link) is forced to make with
cuts in an arrangement, given that its link class is fixed. See Definition 7b.1.

list: A sequence of paths that a given path crosses over. See, for example, seam list.

local: A property of topological spaces is usually said to hold locally in a space X if it
holds within arbitrarily small neighborhoods of every point of X. (For properties
that open sets do not normally have, such as compactness, the definition has to be
modified somewhat.) For example, a space is locally path-connected if it has a basis
of path-connected sets.

local embedding: The map f: X -. Y is a local embedding if X has a basis of open sets
U such that flu is an embedding.

local homeomorphism: The map f: X - Y is a local homeomorphism if X has a basis of
open sets U such that f(U) is open in Y and flu is an embedding.

locally minimal: A linear path between two fringes of a sheet is locally minimal if its
length (in the wiring norm) cannot be reduced by moving its endpoints along their
respective fringe edges. The path need not be a chain; it can leave the sheet.

loop: A path whose endpoints coincide. A loop of k links is...

major: Neither empty nor degenerate (said of cuts and links).

manifold: A topological space that is locally homeomorphic to R ' for some m. See
Definition 2d.1.

margin: The margin of a cut is the difference between its capacity and its flow. Safe cuts
are those with nonnegative margin (of safety). A subcut whose margin i- zero is called
'marginal', or 'marginally safe'.

maze: A collection of tunnels, indexed by pairs ±b of diagonal angles, which begin and
end at the same points. Every gate in the tunnel corresponding to the angles ±6 must
be a subpath of a linear path of angle V.
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metric: Also called 'distance metric', a metric on a set P is a function d from P x P
to the nonnegative real numbers, satisfying three axioms: (1) d(p,q) = 0 if and
only if p = q; (2) d(p,q) = d(q,p) for all p,q E P; and (3) the triangle inequality,
d(p. q) + d(q, r) > d(p, r) for all p, q, r E P. The metric d gives rise to a topology on
P; a basis for this topology is the collection of sets { q : d(p, q) < c } for p E P and
c > 0. In other words, a subset S of P is open in the metric topology if for every point
p E S there is a number c > 0 such that S contains the set { q : d(p, q) < E}.

metric space: A topological space whose topology is given by a metric. All the spaces
considered in this thesis are metric spaces.

mid-cut: A mid-link between two routes of wires, or between two points on the same
route.

mid-link: A path in a manifold that does not intersect the manifold's boundary.

middle: The middle of a path a is the set a((0, 1)).

minimal: A minimal path from a compact region P to a compact region Q is a linear path
from P to Q whose arc length, measured in the wiring norm, is the distance liP - Q11
from P to Q.

minor: Either empty or degenerate (said of cuts and links).

modular: A modular sketch is a sketch together with a grouping of its islands into modules.

module: A set of sketch islands that move as a unit during compaction.

multigraph: A graph in which each pair of nodes can have multiple arcs between them.

multiply connected: Not simply connected.

necessary: Informally, a crossing of a cut by a wire (or trace, bridge, or link) is necessary
if it cannot be removed by applying a homotopy (of the appropriate type) to the wire.

* The design model provides a formal definition (4b.2).

neighborhood: A neighborhood of a point or set is an open set that contains it.

net: A set of terminals to be connected, or a wire that connects them. Usually appears as
'multiterminal net', to contrast with the usual two-terminal nets. In the sketch model
a net is a loop of traces that do not cross over and enclose no features. In the network
model a net is a loop whose terminals are .he islands it encloses.

network: A collection of nonintersecting nets and islands; an instance of a proposed wiring
model (see Section 10D).

norm: A norm provides a uniform way of measuring distances in a vector space. A
map 11' I1 from a vector space to the nonnegative real numbers is a norm if three
conditions hold: (1) ffxlJ = 0 if and only if x is the zero vector; (2) ltzll = Itl. lIzll for
all vectors z and real numbers t; and (3) lix + yll < llll + llyll for all vectors x and y.
The distance between x and y in the norm 11 - is just lIz - 11l. See also wiring norm.

normal: Said of topological spaces. In a normal space, every two disjoint closed sets have
disjoint neighborhoods. All metric spaces are normal.

obstacle: An island of a sketch that is not a terminal.
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ordering property: A property required of the sequence of potential cuts input to Algo-
rithm A, my abstract compaction algorithm. See Section 9E.

outer: Said of a fringe in a sheet. Every sheet has exactly one outer fringe, within which
the rest of the sheet lies.

outside: The outside of a simple loop in a space X consists of every point in X that is
neither on the loop nor inside it.

partial realization: A partial realization of a trace is minimum-length path through the
gates for that trace of a particular diagonal slope. Partial realizations are constructed
and used by Algorithm T.

partial route: A partial route for a maze is a minimum-length path through one of the
tunnels of the maze.

partition: A partition of a sketch is a set of straight, horizontal cuts in the sketch that
slice each component of its routing region into simply connected pieces.

patch: A patch about a point x in an n-manifold is a homeornorphism of a neighborhood
of x with an open set in the half-space Hn.

path: A continuous function with domain I = [0, 1]. See the beginning of Chapter 2 for
definitions related to paths.

path class: An equivalence class under the relation of path homotopy.

path code: In general, the sequence of cuts in an arrangement necessarily crossed by a
path. See Definition 7b.1. When the arrangement is a pattern, the path can be
constructed by reducing the seam list of the path in that pattern.

path component: The path components of a topological space are its maximal path-
connected subsets. Two points lie in the same path component of a space X if there
is a path in X from one to the other.

path-connected: A topological space is path-connected if every pair of its points can be
connected by a path. Every path-connected space is connected, but not vice versa. If
a space is connected and locally path-connected, however, then it is path-connected.

path homotopy: A homotopy between paths that fixes their endpoints; or the relation of
being path-homotopic. See Definition 2a.1. Two paths are path-homotopic if there is
a path homotopy between them.

path plan: A sequence of crossings that a path is forced to make with cuts in an arrange-
ment, given that its path class is fixed. See Definition b.1.

pattern: A set of straight cuts called seams that divide a sheet into simply connected
pieces for the purpose of determining which paths are path-homotopic. See Defini-
tion 7a.1.

PCB: See printed circuit board.

piecewise: In general, a property holds piecewise for a map f: X - Y if X can be "tri-
angulated- (divided into simplices) such that f has this property when restricted to
each simplex. See the next entry.
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piecewise linear: A map f: X - Y is piecewise linear if X C R n for some n, and X can
be chopped into simplices (points, line segments, triangles, tetrahedra, etc.) such that
f is linear on each simplex, and only finitely many simplices meet at each point. The
composition of piecewise linear maps is piecewise linear, and the inverse of a piecewise
linear map is piecewise linear.

pivotal: The pivotal cuts in a sketch are the diagonal cuts and the cuts between feature
endpoints. Like the critical cuts, they are decisive.

PL: An abbreviation for piecewise linear.

placement problem: A problem that involves positioning inflexible objects (modules) as
well as flexible ones (wires).

plan: A plan for a path w is a finite sequence of triples (y,a,t) such that Y(a) = O(t).
Usually the paths "7 are taken from some arrangement r. See also full plan, path plan,
and link plan.

planar: A graph is planar if its vertices and edges can be drawn in the plane without
crossovers.

pointlike: A pointlike feature in a sketch is one that intersects no other features in the
sketch and consists of a single point.

polygonal: A subset of the plane is polygonal if it lies within the union of a polygon with
its inside, and contains the inside of the polygon. A wiring norm is polygonal if the
set of points of norm 1 is a polygon.

potential cut: A linear path between two features of a sketch that moves in a continuous
manner as those features move, depending only on their relative position. In any
particular configuration, a potential cut may or may not give rise to a cut; hence the
name. See Section 9C.

printed circuit board: A support and connector for electronic devices, made by plating
metal wires onto layers of insulating material.

proper: Representing a valid circuit layout: "design-rule correct". A sketch is proper if
its traces are self-avoiding, and whenever two elements of the sketch have overlapping
territories, they are a trace and one of its terminals. The corresponding property of
designs is denoted by the term 's-proper'. A design is proper if its wires are self-
avoiding and its articles have disjoint extents.

protect: A configuration d protects a potential cut 0' for the sketch S if in the sketch
S(d), the path 0(d) is either a safe cut or not a cut at all.

quotient space: A space obtained from another by identifying or "gluing" some points
to some others. Formally, Y is a quotient space of X if there is a surjective map
f: X -, Y such that the open sets of Y are those sets U C Y for which f-(U) is open
in X.

rail: A rail of a track w is a segment of w that is either (1) supported at only one end, or
(2) supported at both ends by ties of the same slope.

RBE: See rubber-band equivalent.
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reachable: One sketch is reachable from another if it can be obtained from the other

sketch by a continuous motion of modules and wires that shifts modules horizontally
and maintains the routabilitv of the sketch.

realization: A trace or sketch that is the result of a routing process; it may or may not

be feasible.

rectilinear: Composed of horizontal and vertical segments. The rectilinear norm on R 2 is
defined by II(x, y)[[ = max{Ixl, klYl-

reduced seam list: See path code.

reduced intersection graph:

reflect: Two paths in a blanket reflect a crossing between their projections if they make
that crossing themselves.

region: Usually refers to a subset of the plane.

respect: A relation that may obtain between a cut (or subcut) and a design; see Defini-
tion 4e.1. Respect and weak respect (Definition 4c.6) are the main technical conditions
that permit us to relate the flows of different subcuts. A half-cut or mid-cut respects
a design (strongly or weakly) if all its associated cuts respect the design (strongly or
weakly).

restrain: A sheet S (or a gate -y) restrains a path a at x if for all sufficiently small open
intervals (s. t) containing x, the path a(s)c, a(t) leaves S (or fails to intersect In"i).

restricted route: An alternate definition of partial route; see Section 7E.

retract: A subspace A of a space X is a retract if there is a map f: X -- A that fixes

every point of A. The map f is called a 'retraction'.

rigid: Straight, nondegenerate, and marginal (a property of subcuts).

river routing: Refers to wire-routing problems in which wires do not change layers. Thus
all single-layer routing problems may be considered river routing problems, but I prefer

to reserve the term 'river routing' for situations in which each component or layer of
the routing region is simply connected.

roots: With respect to a pattern in which o is free, the roots of a path a are the borders
of that pattern that contain the endpoints of a.

rough routing: A path that indicates the path class of a wire to be routed.

routable: An instance of a routing problem (e.g., a sketch or design) is routable if it has
a proper routing (realization, embedding). Similarly, a design is $-routable if it has ai -proper embedding.

routability conditions: Necessary and sufficient conditions for a layout to be routable.

routability property: A set It of potential cuts for a sketch S has the routability property
if (1) the failure of a configuration d to protect all elements of Vl' implies unroutability
of S(d), and (2) the routability of S(d) is guaranteed if all configurations Id with
t E fO, 1) protect all elements of 4'.
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route: A route for a trace is any bridge, not necessarily a trace, that is bridge-homotopic to
that trace. A route for a wire is any link, not necessarily a wire, that is link-homotopic
to that wire.

route: Also refers to a path through a tunnel. If w is a tight track through a maze and 6
is a diagonal angle, then the shortest path through the b-tunnel of this maze is called
the 6-route of w.

routing region: In an instance of a routing problem, the space through which the wires -

are to be routed.
rubber band: The rubber band for a trace in a sketch is the shortest path that is a limit

of routes for that trace.
rubber-band equivalent: A standard form for a sketch; the input to my routing and rout-

ability testing algorithms. The rubber-band equivalent (RBE) represents the features
of the sketch and the rubber bands that result from shrinking each trace to its min-
imum length. The RBE data structure is optimized for computing the sequences of
necessary crossings of cuts in the sketch.

safety: The central concept in the routability theorems concerning single-layer routing. A
cut is safe if and only if its congestion (or flow) does not exceed its capacity. (Where
flow and congestion are both defined, we use flow to determine safety.) A sketch (or
design) is safe (or :-safe) if and only if all its nonempty straight cuts are safe. A design
is safe if and only if all its major straight cuts are safe.

scanning: A fundamental algorithmic technique in computational geometry. A scanning
algorithm constructs its output by sweeping a scan line across the objects in its input,
processing each object as it enters and leaves the scan line.

scrap: A simply connected, open submanifold of a blanket.
"P seam: One of the straight cuts in a pattern.
. seam list: The sequence of seams in a pattern that a piecewise linear path croses over.

segment: The segments of a piecewise linear path a are its maximal linear subpaths a,,j
with s < t. Consecutive segments of a PL path can be collinear if the path is not
canonical.

self-avoiding: A wire in a design is self-avoiding if its article does not divide the sheet.
Similarly, a trace in a sketch is self-avoiding if its territory, together with those of its
terminals, does not separate any two of the sketch's islands. The requirement that
wires be self-avoiding is one of the complications of wire routing in multiply connected
regions.

semisimple: Semisimplicity is a desirable attribute of half-cuts and mid-cuts. The sub-
paths of a cut between its necessary crossings by wires are semisimple subcuts for
those wires. All subcuts akin to these are semisimple as well. See Definition 4e.5.

separable: A separable space is one that has a countable dense subset.
settle: Section 8A defines for each suitably restricted sketch a family of sheets and designs

parameterized by a positive real number E. A function f of c settles at a function g
of c if the equality f(c) = g(c) holds holds for all c less than some co > 0.
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shadow: The shadow cast by a point r E R2 with respect to a point p is the set of points q
such that 1Ip - ql = 11p - rl + I1 - rl.

shadowed: A cut P in a sketch is shadowed if there is a point r on a feature of the sketch
such that q is in the shadow of r with respect to p.

% f sheet: The routing region for a design; the result of removing one or more (but finitely
many) polygonal holes from a closed polygonal region in the plane.

side: A simple link in a blanket separates it into two scraps, one on its left and one on its
right. These scraps are the two sides of the link.

similar: Two crossings between paths in a sheet are similar if the liftings that reflect one
also reflect the other. Equivalently, the crossings are similar if the subpaths that
connect them are path-homotopic. See Definition 4b.2.

simple linear inequality: In the context of linear programming, an inequality x, -x, > a,,
in which x, and zx are variables and aij is a constant.

simple loop: A piecewise linear loop that would be injective but for the coincidence of its
endpoints.

simple path: A piecewise linear and injective path.

simply connected: A topological space is simply connected if (1) it is path-connected.
and (2) every loop in that space can be continuously shrunk to a point. For a formal
dcfinition, see Definition 2a.4.

skeleton: The subgraph of an adjacency graph obtained by omitting gate arcs.

sketch: One of my two basic representations of a circuit layer, discussed in Section 1A.

sketch compaction: Given a routable sketch, the problem of finding and routing a reach-
able sketch of minimum width. See Section 9A.

sketch routability: The problem of determining whether a given sketch is routable.

sketch routing: Given a routable sketch, the problem of finding a proper realization that
minimizes the euclidean arc length of every trace.

space: A topological space: a set with a system of neighborhoods (open sets) closed under
finite intersection and arbitrary union.

span: A cut set r spans the sheet S if for some edging A of S and for every two elements
P, Q E A such that the minimal cuts from P to Q are all cuts in S, the set F a minimal

*l path from P to Q.

stable: A design is stable with respect to an arrangement if wherever a wire in the deisgn
intersects a cut in the arrangement, it intersects transversely, crossing over the cut at
that point.

starlike: Also called 'star-convex'. A subset P of a flat manifold is starlike about x E P
if for every point y E P, the linear path x r, y exists and lies in P. A convex set is one
that is starlike about each of its points.

straight: A path in a flat m-manifold is straight if its projection to R' is linear and
nonconstant.
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strand: One segment of a rubber band. (Rubber bands are piecewise linear.)

string: A finite sequence over a fixed alphabet. Path codes and link codes are strings over
a pattern.

strut: A rigid cut or half-cut around which a wire route bends. See Definition 5b.5 and
Section ID. The struts of an ideal embedding are the constraints that force it to be
as long as it is.

subcut: A cut, half-cut, or mid-cut.

sublink: A subpath of a link; any path in a manifold whose middle does not intersect the
manifold's boundary.

submanifold: A subset of a manifold that is itself a manifold of the same dimension.

subpath: A subpath of a path a is any path of the form ait for a, t E I. The definition
of CaI is Qat( = a((1 - X)s + x).

A track has certain special subpaths, called 6-subpaths, for each diagonal angle 6.
A 6-subpath of a track w is a path w°:j with s < t such that either a = 0 or W has a
tie of angle ±6 at s, and either t = 1 or w has a tie of angle ±6 at t.

subspace: A subset A of a topological space X with the inherited topology: the open sets
in A are the intersections of the open sets of X with A.

substring: A contiguous subsequence of a string.

support: A straight path a in R 2 supports a piecewise linear path w at a E (0, 1) if
a'(1) = w(s) and w turns toward a(0) at s. If w:a and w,.t are segments of w, we also
say that a supports these segments.

tangent: A straight path a in R 2 is tangent to a straight path a if the line containing a
intersects the polygon P(a) at a(l), but does not intersect inside(P(a')).

taut: A route of a wire is taut if it has a strut at each of its joints. Ideal routes are taut
(Proposition 5b.6).

taxicab: The taxicab norm on R 2 is defined by 11(x, )J = JxJ + lyI.

terminal: In general, the terminals of a wire (or trace) are the fixed objects to which that
wire must connect. The terminals of a link or half-link are the fringes that contain its
endpoints.

terminal merging: Refers to a modification of the sketch model in which the terminals
of each trace are permitted to have overlapping territories and to coalesce during
compaction.

territory: The territory of an object (feature, trace, fringe, or wire) is a region of the
plane that represents the space allocated to it on its layer. It accounts not only for
the physical dimensions of the object, but also for the necessary separation between
objects. In other words, it encapsulates the geometric design rules for that object;
two objects are assumed to interact if and only if their territories overlap.

thread: The image of a simple link.

tie: A tie for a track w is a straight path a whose angle is diagonal, and which supports
two segment of w, both of which are tangent to a.

- 355 -



Glossary

tight: A piecewise linear path a is tight in a sheet S if S restrains W at each of its joints.

Similarly, a is tight in a tunnel or maze if for each joint x of a, some gate in that

tunnel or maze restrains a at z.

topological property: A property that is preserved by homeomorphisms; what topology
is about.

trace: A flexible object in a sketch. The metallized lines on a printed circuit board are
(or used to be) called 'traces'.

trace arc: In the adjacency graph of a sketch, an arc representing adjacency across a gate.

trace homotopy: A bridge homotopy that fixes the endpoints of the bridge.

track: A piecewise straight path with a tie at every joint.

trivial: Of paths in sheets, path-homotopic to a path in a single fringe. In a sheet S,
a crossing (c,r) of a cut X by a chain p is trivial if for some i,3 E {O, 1) the path

X,:c * P,:i homotopic to a path in Bd S.

tubular neighborhood: An especially nice neighborhood of a simple sublink: see Defini-
tion 3b.3.

4 tunnel: A sequence of gates through which a path must pass. Through any tunnel there
is a unique minimum-length path. Tunnels are similar to corridors, but are more
precisely defined; see Definition 7d.5.

turning: A piecewise linear path a turns at s E (0, 1) if a has two segments Or:, and
a.:t which either overlap or form an angle. If a is a link in a sheet, then a turns at
x E {0, 1} if it forms an acute angle with a fringe there. If a is a path in the plane, it
turns 'toward' some points and 'away from' others. If a is a link in a blanket, it turns
'toward' one of its scraps and 'away from' the other.

uniform convergence: A sequence of functions (f,,) into a metric space with metric d
converges uniformly to a function f if for every c > 0 there is an N such that
d(f(z), f,(z)) < c for all n > N and all z.

unit polygon: For a piecewise linear norm, the analogue of the unit circle: the set of
vectors of norm 1.

unsafe: See safety.

via: A connection between wires on different layers of a chip or printed circuit board. In
an integrated circuit, also called 'contact cut'.

visibility graph: The visibility graph of a sketch is a function of the features in the sketch.
Its nodes are the feature endpoints and its arcs are the features and the cuts between
feature endpoints.

VLSI: Stands for Very-Large-Scale Integration; refers to the technology that allows mil-
* 0lions of electrical devices to be fabricated on a single chip.

wall: When compacting a sketch horizontally, we assume that the sketch is bounded at
the left and right by vertical lines. These lines are called walls, and are treated as
features.
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weak: If a straight cut in a sheet can be reduced to a straight chain by link and path
homotopies that do not increase its length, and this chain contains either two or more
links or an entire fringe edge, then the cut is weak. See Definition 6d.2. One may
ignore weak cuts when testing routability.

weak respect: See respect (and Definition 4c.6).

web: A web of k threads is the image of a loop of k links in a blanket.

width: Every feature and trace in a sketch, and every fringe and wire in a design. has a
width that indicates how much area it requires. See extent and territory. In the RBE
of a sketch, a crossing sequence or a cable has a width equal to the sum of the widths
of the rubber bands it involves.

winding: The winding of a cut and a wire is the number of similarity classes of necessary
crossings between them. Winding is to entanglement as flow is to congestion.

wire: Something to be routed. In the design model, 'wire' has a technical meaning: a
wire in a sheet is a simple link whose terminals are convex and inner.

wiring model: The set of rules (design rules and others) that determine how the wires in
a routing problem may be routed. More specifically, the definition of what constitutes
a proper solution of a routing problem.

wiring norm: Part of a wiring model: the norm . fl used to measure widths, extents, and
separations of layout components, and the capacities of cuts. Normally the wiring
norm is an arbitrary piecewise linear norm, which means that the set of points of
norm 1 is a convex polygon.

I
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